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ABSTRACT 

This study seeks to decompose the variation in place-based all-cause mortality by focusing on 

within-state (Wyoming, U.S.) county-level socioeconomic and structural factors.  A deeper 

understanding of the significant role these factors play may foster policy solutions that can better 

address mortality disparity.  Results from several two-way error component empirical 

specifications finds no evidence supporting the contention that observable socioeconomic factors 

matter in explaining variation in mortality within the state of Wyoming.  Evidence from an all 

county panel spanning over 11 years suggests that differences in all-cause mortality rates can be 

explained by the asymmetric and growing share of the population aged 65 and above (the 

greying of many parts of the state) and certain latent county and time-specific effects.  

Implications of the investigation call for a shift in research focus from the aggregate to 

individual-level data controlling for key socioeconomic resources. 

Keywords: Wyoming mortality rates, Rural mortality disparities, Socioeconomic effects 

JEL Classification:  I15, J11, N32, O18 

1. Introduction 

Over the past three decades, place-based mortality patterns have shifted in the United States.  

The historic 'urban mortality penalty' has evolved to greater mortality disparities found in rural 

America.  For example, in 1980 the difference between rural and urban age-standardized 

mortality (rural minus urban) was around -1 death per 100,000 population (Cosby et al 2008).  

With time, this wedge has changed signs and increased to +135 by 2016 (Cosby et al 2019).  

Recent analyses indicate that the rural-urban difference is broad based  ̶  occurring in all U.S. 

census divisions (Gong et al 2019) and across all leading causes of death (Cosby et al 2019).  It 

is important to note that the growing difference is not the result of rising overall mortality in 

rural American  ̶  rather the rural disparity is the consequence of overall urban mortality 

declining at a much faster rate (James 2014). 



International Journal of Social Science and Economic Research 

ISSN: 2455-8834 

Volume:06, Issue:10 "October 2021" 

 

www.ijsser.org                              Copyright © IJSSER 2021, All rights reserved Page 4173 
 

Because this rural disparity is a recent discovery (Cosby et al 2008), definitive causes continue to 

be assessed.  Early findings suggest that socioeconomic forces may play a major role in 

determining differences in place-based mortality.  Important socioeconomic determinants 

including education, income, poverty and unemployment have been found to be significantly 

associated with mortality variation (see Spencer et al 2018 and Cosby et al 2019 for extensive 

reviews).  Other factors associated with rural residence such as race, heath care access and 

insurance coverage have also explained differences in place-based mortality (Gong et al 2019).   

Based on the current inventory of literature   ̶  higher percentages of non-white populations, 

higher percentages of poverty, higher rates of unemployment, lower levels of education 

attainment, lower levels of income and deficiencies in health care access are associated with 

higher mortality. 

Interestingly, socioeconomic effects on variations in all-cause mortality within smaller 

jurisdictions (e.g. U.S. states) has received little attention.  This void in the literature is puzzling 

in part because unpacking within state differences could assist best placed state-level policy 

efforts addressing rural mortality disparities.  In this paper we extend the analysis by examining 

socioeconomic variation in mortality within the least populated state in the union, Wyoming.  

Examining Wyoming, with its diverse and asymmetric natural resource based economy, provides 

the perfect natural experiment aimed to disentangle veritable rural mortality disparity.  This 

research debits the literature inventory by utilizing a balanced panel of time-series, cross-section 

data from 2010 - 2020 (T = 11) and across all 23 counties (N = 23) within the state.  Exploiting 

the richness of this panel, allowances are made for any unobservable county and year effects 

which could otherwise bias results based on single cross-sections or time-series (Kunce 2021).   

Results from several two-way error component specifications finds no evidence supporting the 

contention that observable socioeconomic factors matter in explaining variation in mortality 

within the state of Wyoming.  Evidence from the all county panel suggests that differences in all-

cause mortality rates can be explained by the asymmetric and growing share of the population 

aged 65 and above (the greying of many parts of the state) and certain latent county and time-

specific effects.  The balance of this examination is divided into four sections. Section 2 

describes the data, provides sources and presents descriptive statistics.  Additional attention is 

paid to one key dependent variable, all-cause age-standardized mortality rates.  Section 3 

presents the empirical model and discusses the complex econometric issues.  Section 4 interprets 

the empirical results with conclusions and implications drawn in section 5.  
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2. Data 

Figure 1 shows the age-standardized death rate trends for the state of Wyoming and two counties 

  ̶ Niobrara, population 2,467 least in 2020 and Laramie, population 100,512 most in 2020.  The 

Laramie county trend appears relatively flat to slightly increasing, hovering around the county 11 

year mean of 7.7 deaths per 1,000 population.  Niobrara county's trend presents erratic, mostly 

driven by the low population denominator.  Niobrara county's 11 year mean is 7.3 per 1,000 

population. The state of Wyoming's 11 year overall mean is 7.6 deaths per 1,000 population. 

 

Fig. 1. Wyoming, County Annual Death Rate Comparison, 2010-2020 

Means, over the 11 year panel, of annual age-standardized death rates exhibit considerable 

variation across counties.  Highest rates are found in Hot Springs 9.6 and Freemont 9.1, whereas 

the lowest rates appear in Teton 4.4 and Sublette 5.6.  Figure 2 provides a map of the state 

showing each county, seat, 2020 census population and the sample 11 year mean death rate per 

1,000 population.  

Wyoming, County Comparison, All-Cause Death Rates
Age-Standardized Rates per 1,000 Population 
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Fig. 2. Wyoming County Map 

Table 1 describes, provides data sources and shows descriptive statistics for all variables 

examined.  The selection of regressors closely follows established specifications in the literature 

(see Spencer et al 2018, Cosby et al 2019 and Gong et al 2019). The variable BEDS is intended 

as a proxy for a county's healthcare infrastructure.  Mindful of the multicollinearity issues inherent 

in aggregate data, attention is paid to the orthogonality of covariates. A correlation matrix for the 

right-hand-side (RHS) is provided in Table 2. Moreover, variance inflation factors (VIF) are 

estimated for each regressor and shown in the far-right column of Table 2.  Multicollinearity, as a 

matter of degree, does not appear problematic with this suite of regressors. 
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Table 1. Data Description, Sources and Descriptive Statistics 

DEATHRATE.  All-cause, jurisdiction of occurrence, age-standardized rate per 1,000 total county 

population.  National Center for Health Statistics, National Vital Statistics System, 2010-2020.  2020 

population data, including age group breakdowns, from the current census detail, U.S. Bureau of the 

Census.  

Mean 7.41, STD 1.42. 

Total County Deaths Mean 207, STD 205;  Population Mean 25,143, STD 23,475;  

Crude Death Rate Mean 8.93,  STD 2.77. 

NONWHITE.  Percent of the total county population classified as non-white.  Wyoming County 

Profiles, State of Wyoming Economic Analysis Division and U.S. Bureau of the Census, 2010-2020. 

Mean 5.89, STD 4.38. 

EDUCATION.  Percent of the total county population with a bachelor's degree or higher.  Wyoming 

County Profiles, State of Wyoming Economic Analysis Division and U.S. Bureau of the Census, 

2010-2020. 

Mean 24.36, STD 9.12. 

POVERTY.  Percent of the total county population whose income is below the national poverty 

level.  Wyoming County Profiles, State of Wyoming Economic Analysis Division and U.S. Bureau 

of the Census, 2010-2020. 

Mean 11.54, STD 4.24. 

INCOME.  County household median income in 1,000s of 2020 dollars.  Wyoming County Profiles, 

State of Wyoming Economic Analysis Division and U.S. Bureau of the Census, 2010-2020. 

Mean 61.99, STD 11.96. 

UNEMPLOYMENT.  County annual unemployment rate. Wyoming County Profiles, State of 

Wyoming Economic Analysis Division and U.S. Bureau of Labor Statistics, 2010-2020. 

Mean 4.41, STD 0.91. 

BEDS.  County licensed hospital bed capacity per capita.  Wyoming County Profiles, State of 

Wyoming Economic Analysis Division, 2010-2020. 

Mean 2.69, STD 1.77. 

UNINSURED.  Percent of total county population with no health insurance coverage. Wyoming 

County Profiles, State of Wyoming Economic Analysis Division and U.S. Bureau of the Census, 

2010-2020. 

Mean 13.52, STD 2.76. 

65PLUS.  Percent of total county population aged 65 and above.  Wyoming County Profiles, State of 

Wyoming Economic Analysis Division and U.S. Bureau of the Census, 2010-2020. 

Mean 17.04 , STD 4.73. 
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Table 2.  Correlation Matrix and Variance Inflation Factors 

  
NONWHITE EDUC POVERTY INCOME UNEMP BEDS UNINS VIF 

NONWHITE 1.00             1.39 

EDUC 0.07 1.00           1.12 

POVERTY 0.27 0.12 1.00         2.01 

INCOME -0.12 0.10 -0.64 1.00       2.31 

UNEMP 0.23 -0.11 -0.18 0.14 1.00     1.24 

BEDS 0.14 -0.13 0.33 -0.55 -0.17 1.00   1.56 

UNINS 0.35 -0.12 -0.04 0.02 0.28 0.14 1.00 1.27 

65PLUS -0.11 -0.17 0.03 -0.61 -0.08 0.33 -0.08 2.58 

The initial dependent variable examined is a county's annual age-standardized all-cause mortality 

rate per 1,000 population.  Age-standardized (adjusted) rates (R') are commonly used in the 

ecological mortality literature to compare relative indexes across groups and over time.  The 

National Center for Health Statistics (NCHS) computes the standardized rates by weighting all-

cause death rates (Rj) as follows, 

   j j

s

sj
R

P

P
R'                           (1) 

where Psj is the standard county population for age group j and Ps is the county total standard 

population (all ages combined).  Age-standardized rates examined herein are based on the 

accepted 2000 U.S. standard population statistics (National Vital Statistics Reports 2017).  

Appendix A details the 2000 standard population weights for Laramie County as an example. 

Age categorized death counts form the numerator of Rj and are based on death certificate data 

received and coded by the NCHS. According to the NCHS, death certificate counts deliver the 

most complete and accurate picture of lives lost in the U.S.  Death related data used for this 

paper was accessed from the NCHS on September 30, 2021. 

3. Econometrics 

The general model estimated becomes, 

  ititit XY       i = 1, . . ., N;  t = 1, . . ., T                                       (2) 
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where Yit is the dependent variable, α is a scalar intercept, Xit are observable socioeconomic 

variables that vary across counties i and over time t, β is a vector of estimated coefficients and ηit 

denotes the overall error term.  The error term is comprised of three components, 

  ittiit   ,              (3) 

where μi denotes the unobservable county specific effects, λt represents the unobservable year 

specific effects and νit is the remainder stochastic disturbance.  The component μi is time-

invariant and will account for county specific effects (characteristics) not included in the right-

hand-side.  Similarly, λt is county-invariant and will account for any time effects not included in 

the regression.  Examples of what the component λt controls for herein are medical technological 

advancement and/or contagious disease outbreaks effecting all counties. The remainder 

disturbance νit varies with counties and time and denotes the usual error term. 

Generally, two specifications of equation (2) are considered. Fixed effects treats μi and λt as fixed 

yet unknown constants differing across counties and over time.  This specification is easily 

estimated by including county and year dummy variables in the right-hand-side (Least Squares 

LSDV estimator).  If N and/or T are large, conserving precious degrees of freedom, estimates are 

generally obtained by transforming the data into deviations from respective group means 

('within' estimator).  Alternatively, random effects assumes that μi and λt are random, distributed 

independently across counties and over time.  Estimates of this specification are based on 

transformations of the data into deviations from weighted respective group means where the 

weights are based on the variances of the components in equation (3), N and T (Feasible GLS 

estimator). The potential correlation of μi and λt with the variables in Xit is a primary 

consideration.  If these correlations are present, random effects estimation yields biased and 

inconsistent estimates of β and the variances of μi , λt and νit .  By transforming the data, into 

deviations from the basic group means, the fixed effects estimator is not impacted by this lack of 

orthogonality but is not fully efficient since it ignores variation across counties and perhaps time 

periods.  The choice of estimator generally rests on statistical considerations and hypothesis 

testing.  Hausman (1978) outlines a specification test of the null hypothesis of orthogonality 

between the latent effects and Xit . 

The random effects specification requires exogeneity of all regressors and the components in 

equation (3).  Conversely, the fixed effects model allows for endogeneity of all the regressors 

and μi , λt .  In order to avoid this all or nothing choice of exogeneity, Hausman and Taylor 

(1981) (HT) propose a third specification for estimating equation (2) where the RHS is split into 

two sets of variables, those assumed uncorrelated (exogenous) with μi , λt and νit, and those 
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correlated (endogenous) with μi and λt , but not νit.  The uncorrelated set identified serves two 

functions, (i) using mean deviations, unbiased estimates of the respective elements of β are 

produced, and (ii) the exogenous set and group means provide valid instruments for the unbiased 

and efficient estimation of β.  The two sets of variables need not rely solely on a priori 

assumptions, correlation hypothesis can be tested.  

4. Results 

One of the key motivations behind pooling a time series of cross-sections is to broaden the data 

base in order to obtain the best and most reliable parameter estimates.  The general restriction is 

the pooled model with the same slope parameters across counties and over time.  These structural 

tests share roots with Chow (1960) and test the null hypothesis of equal slope coefficients.  Table 

3 shows F-tests for pooling across counties and over time.  Though not statistically imperious, 

both fail to reject the null at the < 5% level. 

Table 3.  Hypotheses tests 

Pooling slopes across counties                           F(176,69) = 1.40 (p 0.055) 

Pooling slopes over time                                    F(80,165) = 1.34 (p 0.064) 

Within Sample White Test                                 10.11 (p 0.182) 

LM Test RE                                                        94.58 (p 0.000) 

Two-way county & year effects               

                               vs. pooled OLS                    F(33,213) = 4.74 (p 0.000) 

Pooled Durbin-Watson                                       1.74 

Pesaran CD                                                         1.02 

 

Careful testing depicted in Table 3 fails to reject the null hypothesis of homoscedastic 

disturbances indicated by the pooled 'within' sample White statistic of 10.11.  Two tests denoted 

confirm county and year heterogeneity and verify the importance of controlling for unobservable 

county and year effects.  The Lagrange multiplier test statistic of 94.58 distributed χ2 with 2 

degrees of freedom rejects the null hypothesis, .0: 22

0   H  Second, the test statistic F(33, 

213) = 4.74 is sufficient to reject the null hypothesis of county and year homogeneity at the < 1% 

level.    The Durbin-Watson statistic of 1.74 lies between the critical value limits of the test.  This 

inconclusive region arises because the sequence of residuals is influenced by the movement of 

the covariates in the regression  ̶  not just serial correlation of the errors (Bartels and Goodhew 

1981).   Lastly, the Pesaran CD test statistic of 1.02 fails to reject the null hypothesis of cross-

sectional (spatial) independence at the < 5% level (Pesaran 2020). 
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Results from the pooled ordinary least squares (OLS) and two-way error components estimators 

are presented in Table 4.  The pooled OLS estimates in the upper left column are easily 

challenged due to the sizable LM test statistic and F-test rejection of homogeneity shown in 

Table 3.  The random effects estimates in the upper right column suffer from the endogeneity 

defect described above. The Hausman null, 0),(:0 itti XEH  , of latent effects orthogonality 

is rejected at the < 10% level (exact p value of 0.052).  The random effects estimates lean toward 

misspecification.  The unbiased yet less efficient two-way fixed effects estimates (lower left 

column) offer no support to the social causes hypothesis that aggregate socioeconomic factors 

matter in explaining the variation in within-state mortality rates.  The inconspicuous explanatory 

power of the two-way fixed effects construct (R2 = 0.63) rests solely on the μi and λt .  County 

and year latent effects, captured by the fixed error components, hold the explanation to more 

than 60% of the variation in Wyoming county level age-standardized mortality rates.  A note of 

interpretive caution, fixed effects estimation places great demands on the data.  For example, μi 

capture any between county variation leaving only within county variation to be picked up by 

regressors. 

Table 4.  Pooled OLS and Two-Way Error Components estimates 

Variable (t) 
Pooled OLS Two-Way RE 

Constant (t) 8.71 (7.53)*** 7.96 (5.78)*** 

NONWHITE (t) 0.08 (3.48)*** 0.08 (2.65)*** 

EDUCATION (t) -0.07 (-7.29)*** -0.07 (-5.07)*** 

POVERTY (t) 0.02 (0.82) 0.02 (0.62) 

INCOME (t) -0.01 (-0.92) -0.003 (-0.19) 

UNEMPLOYMENT (t) 0.23 (2.62)*** 0.14 (1.48) 

BEDS (t) 0.03 (0.55) 0.08 (0.97) 

UNINSURED (t) -0.05 (-1.51) -0.02 (-0.50) 

R2 0.36 a 

LM Test (p value) - 94.58 (0.00) 

      

Variable (t) Two-Way FE Two-Way HT 

Constant (t) 2.11 (0.62) 8.12 (1.78)* 

NONWHITE (t) 0.11 (0.54) 0.12 (1.34) 

EDUCATION (t) 0.01 (0.30) -0.06 (-0.81) 

POVERTY (t) 0.04 (0.76) 0.03 (0.70) 

INCOME (t) 0.04 (1.38) 0.005 (0.22) 
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UNEMPLOYMENT (t) 0.19 (1.61) 0.11 (0.92) 

BEDS (t) -0.12 (-0.37) 0.04 (0.25) 

UNINSURED (t) 0.07 (1.40) -0.13 (-0.65) 

R2 0.63 a 

Hausman Test (p value) 13.97 (0.052) 2.54 (0.47) 

a No precise counterpart to R2 in these constructs.  Pseudo calculations of R2 are not 'fit' measures in the 

same sense as in ordinary least squares. 

***,  **,  *  significance at the 1%,  5%,  10% level.    Observations  253. 

If we are inclined to assume that certain variables in Xit are uncorrelated with the latent effects, 

Hausman and Taylor (1981) outlines an estimator that produces consistent and efficient 

estimates of β.  In order to identify variable sets, iterative two-way random effects regressions 

were performed  ̶  varying 7 sets of variables by dropping the regressor indicated in the first 

column of Table 5 with the resulting Hausman statistic in the second column.  For example, the 

fifth row depicts the resulting test statistic when the UNEMPLOYMENT variable is dropped 

from the right-hand-side.  Note that the Hausman test statistic reduces to 6.97 from 13.97.  The 

UNEMPLOYMENT variable appears to be a significant 'correlation contributor'. With 2020 data 

included in the sample, it is not surprising that the UNEMPLOYMENT variable suffers from 

endogeneity. Following this logic, set X1 (uncorrelated) includes NONWHITE, POVERTY, 

INCOME and BEDS with set X2 (correlated) containing EDUCATION, UNEMPLOYMENT and 

UNINSURED. 

Table 5.  Latent Effect Correlation tests* 

 2

6  

NONWHITE 13.38 

EDUCATION 8.43 

POVERTY 12.09 

INCOME 11.46 

UNEMPLOYMENT 6.97 

BEDS 11.70 

UNINSURED 7.19 

*All RHS variables 
2

7 = 13.97 

With the variable sets identified, LIMDEP® Version 11 provides a Hausman-Taylor estimator for 

the one-way random effects model. In order to estimate a comparable two-way specification, T - 

1 time dummies are included in variable set X1 (see Wyhowski 1994).  Results are presented in 

the lower right column of Table 4 above.  Again, none of the observable covariates or 
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instruments (IVs) test significant at any conventional p level.  County and year specific effects 

again provide the majority of the model's explanatory power.  A Hausman test based on the 

difference between the HT and FE estimator yields, 54.22

3  , which fails to reject the null 

hypothesis of orthogonality.  The chi-squared degrees of freedom equal to 3 indicates the 

variable sets are properly identified.  The HT use of within model instruments appears 

appropriate and estimates test unbiased, consistent and are more efficient than the FE 

counterparts.  

Table 6 shows year-specific effect estimates for 3 unbiased specifications  ̶  'within' fixed effects, 

least squares dummy variable (LSDV) fixed effects and the Hausman-Taylor IV random effects 

model.  In 2020, death certificate counts captured more public attention in Wyoming, arguably,  

than any mortality data in recent history.   

Table 6. Year Specific Effect estimates 

 
'Within' Estimator  LSDV Estimator 

 Year Effects (t)  Year Effects (t) 

Scalar Constant 2.11 (0.62)    

2010 0.10 (0.43) Albany 2010 1.20  (1.77)* 

2011 -0.14 (-0.65) 2011 -0.24  (-0.87) 

2012 -0.04 (-0.18) 2012 -0.14  (-0.48) 

2013 -0.29 (-1.66)* 2013 -0.39  (-1.65)* 

2014 0.08 (0.42) 2014 -0.01  (-0.05) 

2015 0.07 (0.34) 2015 -0.03  (-0.10) 

2016 -0.40 (-1.98)** 2016 -0.50  (-1.66)* 

2017 -0.15 (-0.76) 2017 -0.25  (-0.74) 

2018 0.08 (0.39) 2018 -0.01  (-0.04) 

2019 0.11 (1.47) 2019 0.01  (0.03) 

2020 0.58 (1.53) 2020 0.48  (1.22) 

    

 Hausman-Taylor   

 Year Effects (t)   

Scalar Constant 2010 8.12  (1.78)*   

2011 -0.27  (-0.96)   

2012 -0.19  (-0.68)   

2013 -0.49  (-1.72)*   



International Journal of Social Science and Economic Research 

ISSN: 2455-8834 

Volume:06, Issue:10 "October 2021" 

 

www.ijsser.org                              Copyright © IJSSER 2021, All rights reserved Page 4183 
 

2014 -0.13  (-0.44)   

2015 -0.29  (-0.75)   

2016 -0.78  (-1.86)*   

2017 -0.73  (-1.35)   

2018 -0.56  (-0.93)   

2019 0.09  (0.84)   

2020 0.43  (1.36)   

   ***,  **,  *  significance at the 1%,  5%,  10% level.    Observations  253. 

Interestingly, after controlling for age, population, observable and unobservable Wyoming 

county characteristics and all county-invariant year effects, the 2020 specific effect is statistically 

insignificant at conventional probability levels for all specifications.  It appears the heightened 

public attention within the state was centered on the anecdotal.  

A review of an earlier version of this paper suggests that the 20 year old age adjustment imposed 

on the dependent variable may be masking a vital and timely explanatory factor of mortality 

variation.  The reviewer cites a recent population turning point analysis published by the U.S. 

Census Bureau (see Vespa et al 2020).  This Current Population Report focuses on key 

demographic changes expected into the year 2060.  Most notably, the percent of the U.S. 

population aged 65 and above is expanding and is expected to be roughly one forth by 2060.  

Moreover, the report projects that by 2034, those aged 65 and above will outnumber children 

(those aged 18 and below) for the first time in U.S. history.  With the population rapidly aging 

and deaths expected to rise substantially, it is projected that immigration will become the 

primary source of future population growth   ̶ overtaking natural (births over deaths) increases. 

Pivoting this national analysis to Wyoming, Table A1 in Appendix A shows that Laramie county 

has experienced a 48% increase in the aged 65 and above population demographic from the 2000 

NCHS standard which roughly mirrors the overall increase for the state.  In response to the 

review, the entire empirical method outlined above was recalculated with a new dependent 

variable, all-cause crude mortality rates (deaths/(population/1,000); and one additional covariate, 

the percent of a county's total population aged 65 and above (65PLUS).  Table 1 above provides 

descriptive statistics for the new variables. Table 7 depicts the alternative two-way error 

component results. 
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Table 7.  Alternative Two-Way Error Component results 

Variable (t) 
Two-Way RE Two-Way FE Two-Way HT 

Constant (t) 7.88 (3.19)*** 5.72 (1.14) 3.42 (1.76)* 

NONWHITE (t) 0.08 (2.03)** -0.005 (-0.02) 0.04 (0.26) 

EDUCATION (t) -0.07 (-4.10)*** 0.004 (0.09) 0.06 (0.46) 

POVERTY (t) -0.06 (-1.46) -0.001 (-0.02) -0.04 (-0.81) 

INCOME (t) -0.05 (-2.36)** 0.01 (0.37) 0.007 (0.18) 

UNEMPLOYMENT (t) 0.03 (0.25) 0.16 (1.26) 0.13 (0.94) 

BEDS (t) 0.06 (0.57) -0.52 (-1.47) 0.06 (0.23) 

UNINSURED (t) -0.005 (-0.13) 0.03 (0.71) 0.22 (0.63) 

65PLUS (t) 0.35 (7.86)*** 0.26 (1.69)* 0.41 (2.60)*** 

2020 EFFECT - 0.20 (0.41) 0.40 (0.59) 

R2 a 0.89 a 

LM Test (p value) 174.54 (0.00)     

F(33,212) (p value)   6.52 (0.00)   

Hausman Test (p value) 19.86 (0.01)   3.97 (0.26) 

      a No precise counterpart to R2 in these constructs.   

      ***,  **,  *  significance at the 1%,  5%,  10% level.    Observations  253. 

The Hausman test statistic of 19.86 provides strong evidence of misspecification in the random 

effects construct.  The inefficient fixed effects results shown explain 89% of the variation in 

crude mortality rates with the new covariate 65PLUS significant at the < 10% level.  The 

inconspicuous explanatory power of the two-way fixed effects construct continues to rest 

primarily on the μi and λt .  The Hausman-Taylor IV random effects estimates test unbiased and 

efficient given 2

3 = 3.97.  The additional variable 65PLUS is significant at the < 1% level.  The 

coefficient estimate of 0.41 indicates that, for the average county, a 1% increase in the aged 65 

and above population share increases deaths by roughly 10 per year.  Recall that mean deaths for 

a Wyoming county is 207 annually (see Table 1 above).  None of the county level 

socioeconomic or structural variables are significant at conventional levels.  The 2020 year 

specific effect is again insignificant at conventional p levels. The reviewer's concern that the 

mistimed age-adjustment to the left-hand-side was masking one crucial explanation for the 

variation in spatial mortality appears warranted and is supported herein.  
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5. Conclusion 

Within the least populated state in the union, Wyoming, the contention that observable 

socioeconomic factors matter in explaining variation in mortality is not supported.  Evidence 

from an all county panel spanning over 11 years suggests that differences in all-cause mortality 

rates can be explained by the asymmetric and growing share of the population aged 65 and above 

and certain latent county and time-specific effects.  The difficult task of disentangling these 

latent effects provides a compelling future research avenue.  Moreover, results herein bolster 

those found in Gong et al (2019) where Wyoming was one of three states established as 

exceptions to the authors' broader analyses and results.  

There is a vast literature critical of the use of aggregate data to explain heterogeneous individual 

occurrence (see Stroker 1993 and Holderness 2016 for reviews).  Statistical properties and the 

biases introduced by using aggregated or averaged data have yet to be adequately explained.  

Aggregation defects likely plague the ecological literature cited in the introduction section above 

and the examination herein.  Practical implications of this paper call for a shift in focus to a 

smaller unit of analysis.  Preference is given to individual-level specifications controlling for 

socioeconomic factors and individual specific effects.  For example, a recent paper by Zhao et al 

(2020) exploits the Chinese Longitudinal Health Longevity Survey from 2002 to 2014 for older 

Chinese adults aged 65 and above.  The survey sample tracks 28,235 individuals over time and is 

used to examine the urban-rural disparity in mortality in China.  Findings suggest that mortality 

disparity among older adults in China can be linked to differences in individual socioeconomic 

resources.  Locating or building a comparable panel for the U.S. may prove to be a challenging 

but worthwhile effort.  
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Appendix A 

Table A1.  Laramie County 2000 Age Population Weights 

Age Category 
Population Weight   

< 1 year 1,078 1.32%   

1-4 years 4,306 5.28%   

5-14 years 11,983 14.68%   

15-24 years 11,460 14.04%   

25-34 years 11,617 14.24%   

35-44 years 13,277 16.27%   

45-54 years 11,489 14.08%   

55-64 years 7,046 8.63%   

65-74 years 5,013 6.14%   

75-84 years 3,223 3.95%   

85+ years 1,115 1.37% 65 + 11.46% 

 81,607    

  2020 Census 65 +   16.96% 

 


