ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

ADVANCEMENT OF ROBOTICS IN HEALTHCARE

Suhani Chawla

Jaspal Kaur Public School

DOI: 10.46609/IJSSER.2022.v07i12.006 URL: https://doi.org/10.46609/IJSSER.2022.v07i12.006

Received: 5 December 2022 / Accepted: 20 December 2022 / Published: 28 December 2022

ABSTRACT

If robots are not common everyday objects, it is maybe because we have looked robotic applications without considering sufficient attention what could be the experience of interacting with a robot. This article introduces the idea of a value profile, a notion intended to capture the general evolution of our experience with different kinds of objects. In the past two decades, robotics has evolved immensely with increased prospects in biological, healthcare, medicine and surgery industry. Robots are being used in almost everything and almost everywhere. However, they are not to replace qualified human workforce, instead, assist them in routine work and precision tasks to achieve high throughput. Advancements in micro- and nano-robotic devices is very much dependent on innovations in micro-electro-mechanical systems (MEMS) and nano-electromechanical systems (NEMS) with collaborations among diverse domains of research viz., life science, medicine/surgery and engineering. This paper highlights the advancement of Robotics in Neuroscience, Medical Science and IOT in the context of Robotics.

INTRODUCTION

The term "Robot" was first introduced by Karel Capek (Czech writer) in 1921, way ahead of the existence of the very first real robots. Around twenty years down the line, term "Robotics" was coined by a Russian-born American sci-fi writer Isaac Asimov. Robotics tends to be an interdisciplinary sector of science and engineering with exclusive designing, construction and the understanding of utilization of diverse robot types distinctly (Kapur, 2005). Robots are now a days becoming the epicentre of research and application in numerous domains due to their potential use in making the day-to-day living more convenient (Wykowska 2021). Robots provide a plethora of uses and benefits, making them the ideal technology for the future. Soon, robots will be used almost everywhere. Robots have been majorly classified as industrial robots and service robots. Even the service robots can be sub-classified into personal/domestic service robots and professional service robots (Table 1; Table 2) (Bekey and Yuh 2008). The various sectors where robots find their use are manufacturing, assembly, packing and packaging, mining,

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

transport, earth and space exploration, telepresence, entertainment, art, weaponry, laboratory research, schools, offices, safety, mass production of consumer and industrial goods, housekeeping and hospitality, healthcare, medicine, surgery, etc., to name a few (Figure 1). They are replacing all the old school methods of modus vivendi and are turning to be an impregnable asset for the mankind (Pagliarini and Lund 2017; Kornuta et al., 2019; Martinelli et al. 2021).

The robots are designed to be automated and intelligent. They use sensors, actuators and a control system producing motor actions from the sensory data to autonomously react with the environment (Mondada et al., 1994; Posadas, 2008). The first automated robot was built by neurophysicist William Grey Walter in the early 1950s with few interconnected neuron-like analog electronic devices, closing the loop between acumen 2 Advancement of Robotics in Healthcare, Medicine and Surgery and the action to produce complex and purpose-driven behaviours (Walter, 1950; Floreano et al., 2014). Simultaneously, "Unimate" was invented and patented as the first digitally operated and reprogrammable manipulator by George C. Devol in 1954 and it proved to be the very first industrial robot, which was brought into use by General Motors in 1961 (Bekey and Yuh 2008). With the advancements in robotics technology, industrial robots became popular around six decades back. In the late 1960s, Joseph Engleberger modified "Unimate" upon acquiring its patent and incubated Unimation (an organization for production, marketing and sales of industrial robots). For his contributions, he is known as the "Father of Robotics." In the year 1970, Charles Rosen and his research team from academic institution "Stanford Research Institute" developed "Shakey", a far more advanced industrial robot than "Unimate". It was the 1st mobile robot regulated by artificial intelligence. Since the advent of the preliminary robot prototypes to until 2010, the robotics market growth rate was very steady. However, 2010 onwards, this market has witnessed a real growth spurt and is expected to grow to a tune of ~USD 180 billion by the end of 2026.

HUMANOID ROBOTS AND HUMAN COGNITION

Robots are being modulated to create them into a potential tool for scientific inquiry in the field of experimental psychology for understanding human socio-cognitive traits through the implementation of computational models (Wykowska 2021). Thus, they may be a unique tool for generating new hypotheses, predictions and mechanistic explanations regarding human cognition. Human capabilities, limitations, biases and inclinations in a given situation varies from individual to individual and hence, an individual's decision processing and results are variable across time, situation and other aspects. Thus, an individual's behaviour can be remarkably influenced by variations in physiological and psychological states (Makeig et 3 Advancement of Robotics in Healthcare, Medicine and Surgery al., 2009; McDowell et al., 2014). Certain models have been developed to predict behaviour in specific scenarios under specific constraints, but these generally represent the standard human behaviour and do not or

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

rarely predict the probable variability found across the population (Ajzen, 1991). Specifically, the developmental background and cognitive-behavioural repertoire of an individual human, are not adequately taken in account in these models (McDowell et al., 2014). Consequently, the behaviour of an individual in a specific context cannot be accurately predicted. Thus, if specific knowledge of an individuals' behaviour within the context is needed, but is not accurately predictable, it becomes extremely difficult to incorporate robotic technologies with humans in a social context (Alami et al., 2006; McDowell et al., 2014). However, sensing advancements in robotics offers solutions combining computational and data mining approaches that allows research advances towards understanding and integrating interactions between psychological, physiological and behavioural variables that represent the human state. For instance, using similar approaches, researchers have demonstrated advances in automation adapting a relationship between human and robot (Wada et al., 2004; McDowell et al., 2014). Although artificial intelligence, cognitive science, neuroscience and robotics, have different perspectives in its research, all contribute to the understanding of human minds (Liard et al., 2017). Powerful modern artificial intelligence involves building artificial minds along with systems exhibiting intelligent behaviour. Cognitive science involves shaping natural minds with the understanding of cognitive processes generating human thoughts (Liard et al., 2017; Cross & Ramsey, 2021). Neuroscience involves the structure and function of the brain hence concerning how brains give rise to minds. Robotics involves the building and controlling of artificial structures, and thus concerns how minds control such structures (Gallagher, 2006; Liard et al., 2017). Therefore, the integration of 4 Advancement of Robotics in Healthcare, Medicine and Surgery human body with robotic technologies helps to make the human-robot interaction stronger and build robotic technologies with unique information sources that may ultimately provide benefits over humanhuman interactions (Cross et al., 2019). Humanoid robots in this way prove to be advantageous for understanding human cognition and human cognitive development due to their physical embodied presence as well as options for experimental control. They are just not assistants and associates to humans in different spheres, they can even be engaged as sophisticated stimuli for studying socio-cognitive phenomena in humans, can inform us about actual specific elements of humanness and can generate novel theoretical predictions about the workings of the human brain (Wykowska 2021).

ROBOTIC TECHNOLOGIES IN HEALTHCARE AND MEDICAL SCIENCES

During 1980s, robotic technology paved way into healthcare industry (Kujat, 2010). According to DESTEP approach by Fahey and Narayanan (1986), there are six major factors that influence the development of robotics in healthcare and medical science domain viz., demography, economy, society, technology, environment and politics. As development synergises value addition, in consequence, robotic systems benefits health care and medical sciences through

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

labour cost reduction, increased individual independence and self-support in daily life, enhancing the quality of care and performing actions that no human being can achieve (Table 4). The applicability, accessibility, availability and affordability of robots in healthcare and medical sciences with effective outcomes can only be achieved through adequate personalization, proper levels of autonomy, increased work efficiency, appropriate navigation, object manipulation, user safety, low production costs and proper integration of the Internet of Things (IoT) platform (Al-Razgan et al., 2016; Aggarwal et al., 2019). Artificial intelligence (AI) algorithms employed knowledge-based methods to create unique opportunities to 5 Advancement of Robotics in Healthcare, Medicine and Surgery enhance clinical practice. Their employment has been tested at every stage of prognosis to improve treatment approaches and rehabilitation. The increased levels of automation in robots provide good levels of precision for various medical tasks viz., disinfection, communicating with isolated/infectious patients, lifting the patients, phlebotomy, stock maintenance, pharmacy workforce, etc (Awad et al., 2021). As a result of this, large centralised/decentralised robots are being employed in hospitals and pharmacies to accelerate medication stocking, storing and picking as well as managing stocks, tracking and distributing medication to the patients (Purkiss 2007). Besides, small biodegradable robots such as microrobots/nanorobots are being remotely monitored for accurate in vivo drug delivery to targeted disease sites, for internal wound closures or for elimination of exogenous substances from within the body. All these advancements are possible due to 4D printing, which is an ultraadvance manufacturing technology with the utilization of smart materials that has made remarkable progress where 3D printed robot models are designed as programmable tools with abilities to respond to varied stimuli (Joyee and Pan, 2020). Patients with physical impairments/rehabilitation patients are provided services and physical assistance through assistive robots/autonomous robots/personal care robots/carebots (Fosch-Villaronga and Ozcan, 2020). Some of such robots in trend now a days are prosthetic limbs for ambulation as well as exo-/endo-skeletons that serve as wearable devices to substitute for/improve the functionality of patient's limbs. For superior rehabilitation outcomes, these robots are employed for efficient training of physically impaired/rehabilitation patients along with quantitative feedbacks to the patients (Chen et al., 2013). With the dearth in skilled nursing staff, nursing robots proved to be a promising innovation in robotic technology that egressed as an alternative with assistive robots to perform autonomously in healthcare environments. However, these nursing robots are required to perform work or be used in unification with human nurses. 6 Advancement of Robotics in Healthcare, Medicine and Surgery Nursing robots are specifically designed and programmed to mimic the morphology and communicating abilities of human nurses. The major targeted deployment locations of assistive nursing robots are home and living centers having ageing population (Carter- Templeton et al., 2018; Maalouf et al., 2018; Anghel et al., 2020; Frith 2021; Fernandes and Bijlee, 2022). The worldwide pandemic era of COVID-19 has

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

witnessed very efficient utilization of aerial robots (drones) for distribution of necessary medical supplies in the interior rural communities and remote areas, globally. Not only this, but drones also aerially transported pathological specimen/samples to centralized testing facilities within no time, which helped medical practitioners make rapid treatment decisions and improve patient health conditions (Sham et al., 2022).

ROBOTIC TECHNOLOGIES IN SURGERY

The integration of neuroscience with robotic technologies aims towards understanding interactions between psychological, physiological and behavioural variables that represent human state through the use of robotic technologies (McDowell et al., 2014). Technological developments and their interventions in imaging guidance, intraoperative imaging and microscopy have pushed neurosurgeons to the limits of their competence and stamina. Due to these attributes associated with robotic systems, they are now considered as an epitome of the future of surgery. The introduction of robotically assisted surgery has provided surgeons with improved ergonomics and enhanced visualisation, dexterity and haptic capabilities (Table 5). The first application of robotic-assisted surgery was in the neurosurgical field but robotic advancements in urology, gynaecology, gastroenterology and orthopaedics are more common due to fewer anatomical challenges. For example, a large cavity where a robotic arm could be used to assist in spine surgery is non-existent and brain surgery involves 7 Advancement of Robotics in Healthcare, Medicine and Surgery delicate neural structures and approaches through narrow surgical corridors where manipulation and space are both limited. (Doulgeris et al., 2015). The first neurosurgical robots relied on preoperative images to determine robotic positioning. As a result, surgeons could not dynamically monitor needle placement under imageguidance and were blind to changes such as brain shift. To satisfy the need for a real-time, image-guided system, Minerva was developed. The system consisted of a robotic arm placed inside a computed tomography (CT) scanner, thus allowing surgeons to monitor the operation in real-time and make appropriate adjustments to the trajectory as needed (Paul B. et al., 2004; Burckhardt et al., 1995).

Different Rob	ots used in	Neuroscience
----------------------	-------------	--------------

Robot	Year of	Researc	Technology used	Advancements made to	Applications and uses	Refer
	discove	hers		introduce it to human		ence
	ry	involved		system		
		in the				
		discover				

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

		У				
Programmabl	1985	Kwoh et	It uses computed	The surgeries were	The PUMA 200,	29
e Universal		al	tomography and	performed with a	designed to be extremely	
Machine for			Stereotaxic operations	Brown-RobertWells	adaptable, its computer	
Assembly			in the brain surgery	stereotactic frame	is compatible with a	
(PUMA 200)			which is a technique	secured to the same	wide range of imaging	
			that involves guiding	rigid structure as the	computers now in use in	
			the tip of a probe or	robot, providing	the biomedical industry.	
			other sensitive surgical	accurate	The PUMA 200 robot is	
			tool into the brain	transformation from	safe because it has	
			through a small burr	the stereotactic	spring-applied, solenoid-	
			hole created in the	coordinate frame to the	released brakes on the	
			skull without direct	robot coordinate frame.	waist, shoulder, and	
			view of the operative		elbow joints that	
			site.		immediately clamp in	
					the event of a	
					mechanical or electrical	
					failure	
					landre.	
		~				
Neuromate	1987	Grenobl	The computer houses	A single base plate is	This 6 degrees-of-	30
		e	software for the control	implanted into the	freedom (DOF) robot	
		Universi	of robotic movement,	skull under local	was used to position the	
		ty of	the registration process	anaesthesia and during	brain cannula on the	
		Benabid	and stereotactic	imaging the detachable	basis of coordinates from	
		and	planning. It has been	fourspoked fiducial	3D imaging data. The	
		colleagu	designed for use in	system, which has	system has been used in	
		es	stereotactic	MRI- and CT-visible	over 1000 tumour	
			neurosurgery and its	markers at the end of	biopsies, 200	
			use in conjunction with	each spoke, is mounted	investigations of patients	
			conventional	to the base plate. The	with epilepsy, and 200	
			stereotactic localizer	area covered by the	cases of functional	
			frames	imaging includes the	neurosurgery for	

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

				surgical target and the	movement disorders.	
				fiducial markers	Spatially encoded data	
					from radiograph, CT,	
					MRI, or angiography	
					were used to locate the	
					lesion. neuromate can be	
					used for several	
					neurological	
					applications, including	
					deep brain stimulation,	
					endoscopy, and stereo	
					encephalography, and it	
					is an efficient and safe	
					instrument for biopsies	
					in clinical cases.	
Minerva	1993	Glauser	It uses visualisation	The mechanical	It is used in Stereotactic	31
		et al	software developed to	structure of the	surgery which is usually	
			allow operation	Minerva robot system	performed through a 2	
			planning and	is adapted to satisfy the	mm hole drilled in the	
			reconstruction of	sterilisation	skull. This small opening	
			various planes. It is	constraints, the	precludes any direct	
			linked to interface	requirements for	visual control of the	
			software used to pilot	dynamic properties in	operation, and small	
			the operation.	surgical operations,	probes are advanced to a	
			Additional software	and, most importantly,	target within the brain,	
			has been developed to	the safety	previously located on	
			compute the	requirements. Because	computed tomography	
			transforms between the	of mechanical	(CT) images	
			robot's coordinate	inaccuracy and		
			system, the scanner's	misalignment,		
			coordinate system, and	calibration software is		
			a reference coordinate	needed to reach a point		
	I	1	1			1

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

	-				
			system linked to the	defined in the robot's	
			patient's head. All	coordinate frame but	
			instruments are	measured on the CT	
			considered as separate	scanner images	
			robot degrees of		
			freedom. They have		
			been developed as		
			mechanical and		
			electronic entities,		
			including specific		
			control parameters and		
			an interventional		
			procedure during		
			surgery.		
RAMS	1997	Kozlows	The mechanical	RAMS has the	The RAMS robot has 33
		ki et al	subsystem is a cable-	potential to be	been used in
			driven slave arm with	teleoperated, despite	microvascular
			6 DOF. The arm (25	the absence of remote	anastomosis in
			cm long, 2.5 cm in	visual feedback.	neurosurgery. Carotid
			diameter) is mounted	RAMS has adjustable	arteriotomies have also
			to a cylindrical base,	tremor filters and	been performed which
			providing a work	motion scalers to	then subsequently were
			envelope greater than	enhance dexterity.	closed with suture by
			400 cc. Its positional		surgeons, students,
			accuracy is 10		engineers, or even
			microns. The hand		RAMS. RAMS was
			controller also has six		superior to the students
			cable-driven joints		and engineers and as
			with force feedback		effective as the surgeons,
			capability.		but took over twice the
					time to complete the
					procedure.

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

Da Vinci	2000	Intuitive	The Da Vinci System	The Da Vinci System	The DaVinci Surgery	32
Surgical		Surgical	consists of a surgeon's	has reduced risk of	system is a series of tiny	
Robot System			console that is	infection or	highly dexterous robot	
			typically in the same	complications. Less	arms that can be	
			room as the patient,	scarring because of	manipulated by a	
			and a patient-side cart	smaller incisions and	qualified surgeon to	
			with three to four	fewer sutures. Briefer	complete precise cutting	
			interactive robotic	hospital stays/faster	and stitching. During the	
			arms controlled from	recovery. More rapid	surgery, the surgeon sits	
			the console. The arms	return to normal	at a console and views	
			hold objects, and can	activities, including	the patient's target	
			act as scalpels,	urinary continence,	anatomy in a high	
			scissors, or graspers.	sexual function, and	definition 3D image. The	
			The final arm controls	more.	surgeon can deftly	
			the 3D cameras. The		manipulate the robotic	
			surgeon uses the		arms through movement	
			controls of the console		of their own hands and	
			to manoeuvre the		wrists. The advantage of	
			patient-side cart's		getting the robots to	
			robotic arms. The		actually complete the	
			system always requires		work is their ability for	
			a human operation.		absolute, precision,	
					control and flexibility.	
					The surgery can be used	
					on a range of minimally	
					invasive surgeries such	
					as cardiac, urologic	
					including prostate,	
					bladder and kidney	
					cancers, and thoracic	
					surgery.	
Tug	2004	Aethon	TUG houses some	-	It can be used to deliver	34

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

			sophisticated		medications, laboratory	
			technology under the		specimens, or other	
			hood. Multiple sensors,		sensitive material within	
			including sonar,		a hospital environment.	
			infrared and a SICK		TUG can navigate using	
			laser scanner, help it		a built-in map and an	
			navigate autonomously		array of on-board	
			and safely among its		sensors. Additionally, it	
			biped coworkers and		uses Wi-Fi to	
			hospital visitors.		communicate with	
			_		elevators, automatic	
					doors, and fire alarms.	
Hybrid	2011	Cyberdy	When a person	-	HAL is mainly used by	35
Assistive		ne	attempts to move their		disabled patients in	
Limb (HAL)			body, nerve signals are		hospitals, and can be	
			sent from the brain to		modified so that patients	
			the muscles through		can use it for longer-term	
			the motor neurons,		rehabilitation. In	
			moving the		addition, scientific	
			musculoskeletal		studies have shown that,	
			system. When this		in combination with	
			happens, small		specially-created	
			biosignals can be		therapeutic games,	
			detected on the surface		powered exoskeletons	
			of the skin. The HAL		like the HAL can	
			suit registers these		stimulate cognitive	
			signals through a		activities and help	
			sensor attached to the		disabled children walk	
			skin of the wearer.		while playing. HAL	
			Based on the signals		Therapy can be	
			obtained, the power		effectively used for	
			unit moves the joint to		rehabilitation after spinal	
1	1	1		1	1	1

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

			support and amplify the wearer's motion.		cord injury or stroke	
3D Brain Function Mapping	2017	MIT	The vanguard technique combines third-harmonic generation (THG) three-photon microscopy with retinotopic mapping, allowing activity to be observed through deep brain tissue via electrical signatures. It also delivers stunning resolution, allowing individual neurons and their substructures to be studied, as well as fine blood vessels and myelin – a kind of insulator known to be a critical factor in brain processing speed.		It is generally used to study the visual centres of the brain, and can be used to study other regions. It promises to be a powerful tool for understanding differences in healthy and diseased brain states, as well as how the brain responds to environmental stimulation.	36
Stentrode TM	2020	Thomas Oxley	The implant uses wireless technology to relay specific neuronal activity into a computer, where it is	Stentrode [™] is inserted through keyhole surgery into the neck, and from then moved into the motor cortex	The minimally invasive nature of the treatment shows the great potential for micro neurotechnologies to	37

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

converted into actions	via blood vessels. This	help aid people with all	
based on the intentions	minimally invasive	kinds of cognitive	
of the patients.	method avoids the	impairments.	
Amazingly, this tiny	associated risks and		
chip allowed the	recovery complications		
patients to perform	of open brain surgery.		
actions like click and			
zoom, and write with			
93% accuracy, helping			
them do things we take			
for granted like text,			
email and shop online.			

INTERNET OF THINGS (IOT) AND INTELLIGENT ROBOTS

The evolution of Internet of Things (IoT) emerged by the new advancements in the silicon and sensors technologies where distributed sensing systems connected to a cloud computing server establish extremely intelligent algorithms to monitor and interact with humans. These advances in the technology enabling the development of intelligent robots, is also aiding the neuroscience sector (Khan et al., 2020). For example, novel applications are actively being developed in which applications such as brain interfaces control machines and individualised assessment of mental wellness and disease. The use of brain activity and body signals as feedback to enhance human work performance is one emerging application. This is called the field of neuroergonomics (Ayaz &Dehais, 2018). Portable brain and physiological signal acquisition systems track mental activity and performance in a variety of tasks and situations, with algorithms analysing the data to produce work and mental performance metrics. This is very useful for researchers as they can use the data to rethink tasks and work settings in order to increase human productivity and efficiency (Sawangjai et al., 2019; Baig&Kavakli, 2019). 8 Advancement of Robotics in Healthcare, Medicine and Surgery

CONCLUSION

In the past two decades, robotics has evolved immensely with increased prospects in biological, healthcare, medicine and surgery industry. Robots are being used in almost everything and almost everywhere. However, they are not to replace qualified human workforce, instead, assist

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

them in routine work and precision tasks to achieve high throughput. Advancements in microand nano-robotic devices is very much dependent on innovations in micro-electro-mechanical systems (MEMS) and nano-electromechanical systems (NEMS) with collaborations among diverse domains of research viz., life science, medicine/surgery and engineering. From robotassisted surgeries to robots helping humans recover from injury as well as their utilization in physical therapy are the notable models of robot existence. However, despite this future vision, there is little evidence that such robots will exist any time soon. First, in technological terms, autonomous, humanoid robots are nowhere near ready for use in care or other real-world settings involving (physical) contact with people. Second, there is currently little demand for genuine care work done by robots. Neither caregivers nor care recipients have expressed explicit interest in robotic applications. Scenarios proposing this are usually rejected. However, there are many doubts about the broader ethical and legal issues around using robots for care.

Table 1: Classification of industrial robot's applications based on industry type. {Courtesy:International Federation of Robotics (IFR) industry classification and InternationalStandard Industrial Classification of All Economic Activities (ISIC) revision 4} (Jurkat et

Parent Class Title	Sub-Class	Manufacture of	
Agriculture, forestry, and fishing			
Mining and quarrying			
	Food and beverages	Food products; beverages; tobacco products	
	Textiles	Textiles; wearing apparel; leather and related products	
	Wood and furniture	Products of wood and cork; articles of straw and plaiting materials; furniture	
	Paper	Paper and paper products; printing and reproduction of recorded media	
Manufacturing	Pharmaceuticals, cosmetics	Pharmaceuticals, medicinal chemical and botanical products; soap and detergents, cleaning and polishing preparations, perfumes and toilet paper	
	Rubber and plastic products (AutoParts)		
	Rubber and plastic products (non-automotive)	- Manufacture of rubber and plastics products	
	Other chemical products	Coke and refined petroleum products; chemicals and chemical products	
	Chemical products, unspecified		

al., 2021).

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

products (non-automotive)	Other nonmetallic mineral products	
Glass (AutoParts)		
Metal		
a) Basic metals	Basic metals	
b) Metal products (non-automotive)	Fabricated metal products, except machiner equipment	
c) Industrial machinery	Machinery and equipment	
d) Metal, unspecified		
Electrical/electronics	Computer, electronic, and optical pro- electrical equipment	
a) Household/domestic appliances	Domestic appliances	
b) Electrical machinery (non-automotive)	Electric motors, generators, transformers electricity distribution and control appa batteries and accumulators; wiring and v devices; electric lighting equipment	
c) Electronic components/devices	Electronic components and boards	
d) Semiconductors, LCD and LED	, I	
e) Computers and peripheral equipment	Computers and peripheral equipment; mag and optical media	
f) Info communication equipment domestic and professional (non- automotive)	Communication equipment; consumer electro	
g) Medical, precision, and optical instruments	Measuring, testing, navigating, and co equipment; watches and clocks; irradi electromedical and electrotherapeutic equip optical instruments and photographic equipment	
h) Electrical/electronics, unspecified	Other electrical equipment	
Automotive		
a) Motor vehicles, engines, and bodies	Motor vehicles; bodies (coachwork) for a vehicles; manufacture of trailers and semi-tra	
b) Automotive parts		
i) Metal (AutoParts)		
ii) Electrical/electronic (AutoParts)	Parts and accessories for motor vehicles	
iii) Other (AutoParts)		
iv) Unspecified AutoParts		
c) Automotive unspecified		

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

	Other vehicles	Other transport equipment
	All other manufacturing branches	Machinery and equipment manufacturing, repair and installation
	Electricity, gas, steam, and air conditioning supply	
Electricity cas and water supply	Water collection, treatment, and supply; Sewerage	
Ziechenis, gas, and water suppris	Waste collection, treatment, and disposal activities; materials recovery	
	Remediation activities and other waste management services	
Construction	Construction of buildings; Civil engineering	
	Specialized construction activities	
Education/research/development	Education, Scientific research and development	
	Wholesale and retail trade; repair of motor vehicles and motorcycles	
	Transportation and storage	
	Accommodation and food service activities	
	Information and communication	
	Financial and insurance activities; Real estate activities	
Other nonmanufacturing branches	Professional, scientific, and technical activities (without scientific research and development)	
not specified above	Administrative and support service activities	
	Public administration and defence; compulsory social security	
	Human health and social work activities	
	Arts, entertainment and recreation	
	Activities of households as employers; undifferentiated goods- and services producing activities of households for own use	
	Activities of extraterritorial organizations and bodies	

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

References

Brooks, R. (1999) Cambrian intelligence : The early history of the new AI. The MIT Press, Cambridge, MA, 1999.

Dautenhahn, K. (2002) Design spaces and niche spaces of believe social robots in Proceedings of IEEE Int. Workshop on Robot and Human Interaction Communication ROMAN 2002. p. 192-197, IEEE Press. [Dautenhahn and te Boekhorst 2005] Dautenhahn, K. and te

Boekhorst, R. (eds) (2005) Proceedings of the Symposium on Robot Companions: Hard Problems and Open Challenges in Robot-Human Interaction, AISB05 Convention. [Freud 1985]

Freud, S. (1985) L'inquiétanteétrangeté et autresessais. Folios essais, p.213-263. [Kaplan 2001]

Kaplan, F., (2001) la naissance d'une langue chez les robots, Hermès Science [Kaplan 2004]

Kaplan, F. (2004) Who is afraid of the humanoid? Investigating cultural differences in the acceptance of robots, International Journal of Humanoid Robotics, 1(3):465-480. [Kaplan 2005] Kaplan, F. (2005) Les machines apprivoisées: comprendre les robots de loisir, Vuibert. [Norman 1988]

Norman, D. (1988) The design of everyday things. Doubleday. [Hall 1966] Hall, E. (1966) The Hidden dimension. Garden City, Doubleday.

Hamblen, J.O., &Bekkum, G.M. (2013). An Embedded Systems Laboratory to Support Rapid Prototyping of Robotics and the Internet of Things. IEEE Transactions on Education, 56, 121-128. 8.

Aguilar, J., Zhang, T., Qian, F., Kingsbury, M., McInroe, B., Mazouchova, N., Li, C., Maladen, R.D.,

Gong, C., Travers, M.J., Hatton, R.L., Choset, H., Umbanhowar, P., & Goldman, D.I. (2016). A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. Reports on progress in physics. Physical Society, 79 11, 110001.

Chiolerio, A., &Quadrelli, M. (2017). Smart Fluid Systems: The Advent of Autonomous Liquid Robotics. Advanced Science

Krishnan, R.H., &Pugazhenthi, S. (2014). Mobility assistive devices and self-transfer robotic systems for elderly, a review. Intelligent Service Robotics, 7, 37-49.

ISSN: 2455-8834

Volume:07, Issue:12 "December 2022"

Rahul Reddy Nadikattu. 2016 THE EMERGING ROLE OF ARTIFICIAL INTELLIGENCE IN MODERN SOCIETY. International Journal of Creative Research Thoughts. 4, 4, 906-911. 12.

Rahul Reddy Nadikattu, 2014. Content analysis of American & Indian Comics on Instagram using Machine learning", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.2, Issue 3, pp.86-103.