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ABSTRACT 

The United States Department of Education’s National Assessment of Educational Progress 

reports that most US students perform below grade level in math.  Much research has been 

conducted on how to improve math performance in students.  The present study compares the 

algebra 1 problem solving processes used by students to those used by math practitioners, 

professionals who use math as part of their jobs.  Eleven algebra 1 students and eight math 

practitioners were given a set of 20 algebra 1 word problems.  Each was asked to solve the 

problems while a protocol of his or her problem solving processes was recorded.  The protocols 

were analyzed to determine commonalities and differences in problem solving processes both 

within the practitioner and student groups and between them.  Results suggested that students 

were fairly homogeneous and solved problems algebraically by creating and solving formulas, 

employing procedural processes as exemplified by John Anderson’s ACT-R framework (1982). 

Practitioners were more diverse in their approaches and spent more time analyzing the problems 

up front and used their conceptual analysis to generate problem solving processes that often were 

simpler than those employed by students and relied heavily on heuristics and pattern recognition, 

akin to subject matter experts reported in Leddo et al.’s research (1990). Implications for 

mathematics teaching approaches to build these types of practitioner problem solving skills are 

discussed. 
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Introduction 

The United States Department of Education reports in its National Assessment of Educational 

Progress (2020) that a majority of US students perform below grade level in math. This presents 

a national challenge, given the centrality of math in STEM (science, technology, engineering and 

math) fields and the necessity for numeracy skills in daily life.  Part of the reason for low 

performance in math may be that math skills degrade after they have been learned, particularly as 

the difficulty of the mathematics content increases.  For example, Leddo at al. (2021) found that 

within a few months of learning the subject matter, average student performance is about 85% 

for fifth grade math concepts, 65% for algebra 1 concepts, and 46% for algebra 2 concepts. 

In addition to the quantitative factors (degree of forgetting) that may influence how well students 

perform in math, there may be qualitative factors as well, namely how students conceptualize 

mathematical concepts and problem solving processes.  How students think about math and 

approach solving math problems may offer insight into the problems they have and potential 

remedies for improving performance in math. 

One area of study that may offer guidance on how to boost student achievement is expert 

problem solving.  Expert problem solving research has enjoyed a long history, fueled in large 

part by early attempts to create expert systems.  A typical paradigm was to present experts with 

representative problems to solve, ask them to solve the problems while thinking out loud about 

the processes they were using, recording the problem solving protocol and then analyzing the 

protocols to extract and generalize the process (cf., Ericsson and Simon, 1984). 

This type of research led to a rich body of data about what knowledge experts have and how 

experts solve problems in a variety of subject areas, including academic areas such as 

mathematics.  For example, Newell and Rosenbloom (1981) found that experts tend to chunk 

individual pieces of knowledge together to form larger units, thus making them easier to 

remember and use.  A novice (someone less experienced in a subject) might view solving an 

equation as a sequence of individual steps.  An expert may view the same process as “reverse 

order of operations” or “SADMEP” (subtraction, addition, division, multiplication, exponents, 

parentheses), whereby a single concept represents the entire problem solving process. 

Another factor differentiating experts and novices in algebra problem solving is in how problems 

are categorized.  Experts tend to classify problems based on solution strategies, whereas novices 

tend to categorize problems based on the words or objects mentioned in the problems (Shoenfeld 

and Herrman, 1982). 
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Perhaps most relevant to the present study is the work done to investigate how people develop 

expertise.  One of the most influential frameworks in this area is the ACT-R framework 

developed by John Anderson (1982).  ACT-R posits that people start by learning facts and then 

proceduralize those facts into actual problem solving processes. An example of this in algebra 

might be solving a two-step equation.  A student may learn that s/he needs to isolate the variable 

in order to find its value.  This is a fact, but one that does not tell the student what s/he actually 

needs to do.  The student may then learn topics like additive inverse and multiplicative inverse 

that enable such isolation of the variable to occur.  The student learns a procedure for isolating 

the variable by first applying the additive inverse to both sides of the equation and then 

multiplying the multiplicative inverse of the variable’s coefficient to both sides of the equation. 

Once a student can perform these operations, s/he is said to have proceduralized the factual 

knowledge and can now apply that knowledge procedurally to solve problems.  According to the 

ACT-R framework, a person can be considered an expert when s/he has attained this level of 

procedural knowledge. 

Leddo et al. (1990) took the ACT-R theory one step further.  Leddo et al. found that experts did 

have a great deal of procedural knowledge, but that procedural knowledge alone was not 

sufficient to make someone an expert.  Instead, experts had abstract causal/conceptual 

knowledge that captured the underlying rationale for why problem solving strategies worked and 

this knowledge allowed experts to apply different variations of a problem solving procedure to a 

nuanced situation or innovate in a completely novel situation.  Leddo et al. noted that the ACT-R 

framework was necessarily incomplete as it would require experts to have explicit procedures for 

each problem type the expert encountered and would not explain how experts could find 

solutions to novel situations they never previously encountered. Research shows that experts 

contain knowledge over and above procedural knowledge that allows them to perform in novel 

situations (Schwartz, Bransford and Sears, 2005). 

Other differences emerged from the Leddo et al. study.  Experts spent considerable amount of 

time conducting upfront analyses of problems they are solving.  This time involved goal setting, 

information gathering, defining variables and unknowns and determining problem solving 

strategies.  This finding was also echoed in the work by Atman et al. (2007) and Hurwitz et al. 

(2014). 

The extensive research literature on expert problem solving indicates that understanding how 

experts solve problems can be very useful to educators concerned with improving mathematics 

performance in students. For the purposes of the present study, we believe that it is not necessary 

to get students to emulate the problem solving of experts. As researchers in the field of expert 



International Journal of Social Science and Economic Research 

ISSN: 2455-8834 

Volume:07, Issue:04 "April 2022" 

 

www.ijsser.org                              Copyright © IJSSER 2022, All rights reserved Page 1132 

 

knowledge widely acknowledge, it can take 10 - 20 years for a person to become an expert.  

Therefore, trying to get students to emulate experts may be too ambitious for most elementary 

and secondary school students. 

We chose instead to look at math practitioners, those who do math as part of their everyday jobs.  

Such people could be engineers, accountants, statisticians, etc. It may not be necessary that these 

people be actual experts.  However, for them to be successful at their jobs, they need to be 

proficient problem solvers.  Becoming proficient problem solvers seems like an achievable and 

appropriate goal to have for students regarding their math problem solving.  Accordingly, the 

goal of the present study is to understand and compare the problem solving processes used by 

students and math practitioners to see what skills the practitioners have that students do not and 

that might be beneficial for the students to have.  This could lead to the development of teaching 

methods that would enable students to improve their problem solving performance. 

In the present study, algebra 1 was chosen as a testbed for mathematics problem solving. Both 

algebra 1 students and math practitioners were given word problems to solve and their problem 

solving processes were recorded and compared. 

Method 

Participants 

Eleven Algebra 1 students and eight math practitioners participated in the present study.  All 

were recruited from the Northern Virginia area in the United States.  Math practitioners were 

defined as people who used math as part of their jobs.  Of the eight math practitioners, one is an 

actuary, one is an accountant, one is a quantitative analyst, one is a civil engineer, two are 

software engineers and the remaining two are other types of engineers. None were paid for their 

participation in the present study. 

Materials 

The materials consisted of a set of 20 algebraic word problems. These questions include concepts 

of basic algebra such as finding the perimeter of a polygon, setting up an equation with up to two 

different variables, and rate questions. The questions were created by a group of Algebra 1 

teachers under the supervision of a former math content coordinator for a public school district. 

Procedure 
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All participants participated individually with a single experimenter.  The participant was given 

the set of 20 word problems and asked to solve each one. Each participant was asked to write 

down the steps that he or she went through to solve the problem while simultaneously thinking 

out loud (cf. Ericsson and Simon, 1984) about the steps s/he was taking.  The experimenter 

recorded the think aloud process.  Each participant was given unlimited time to complete the 20 

problems and was not allowed to use external resources to assist in problem solving. 

Results 

Each participant’s problem solving protocol was analyzed for the processes used by that 

participant to solve the problem.  The goal was to determine if there were general procedures that 

each participant used across problems.  Once individual problem solving processes were 

determined, the experimenters looked for commonalities and differences across both math 

practitioner and student participants.  This analysis was qualitative in nature. 

For students, there was a general trend to start the problem solving process by creating a formula 

in terms of the variable to be solved.  Then, the student would proceed, using standard algebraic 

principles to solve for the variable.  This is very consistent with Anderson’s ACT-R model. In 

other words, students had learned to proceduralize the concept of solving for a variable given an 

equation.  This finding is not surprising as it is the standard method that is taught in schools and 

in textbooks.  In cases involving applications of algebra to geometry, such as finding side lengths 

of triangle or rectangles that are expressed in terms of variables, students typically drew pictures 

of the geometric shapes and then labeled the sides before setting up their equations.  Again, this 

seems fairly standard compared to what would be expected based on classroom instruction.  One 

notable observation is that students rarely checked the correctness of their answers by plugging 

them back into the equations they set up to see if the equations balanced with the values they 

found.   

In most instances, the students’ process proved to be efficient at arriving at the correct answers.  

However, there were some notable drawbacks.  First, the fact that students generally did not 

check their answers meant that if they used the incorrect initial equations or made a mistake in 

their calculations, they typically did not catch the mistakes and assumed the answers they got 

were correct.  This also implies that, at least in some cases, they did not seem to have a sense of 

what a reasonable answer to the question would look like.  Similarly, they were prone to errors 

when the answer they got was correct for a variable within the problem, but was not the answer 

the problem was asking for.  For example, in some of the geometry-related problems, side 

lengths of a polygon were given in terms of the smallest side (e.g., two inches longer than the 
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smallest side or twice as long).  Students might set up an equation where each side is listed in 

terms of the smallest side (e.g., X, X+2, 2X) and solve for X.  However, if the equation asked for 

a side other than the smallest side, the student might still give the value for X, since that was the 

value s/he solved for. 

Second, if the initial equation that the student set up was incorrect, that often threw the student 

off.  The student might then try a variation of the initial equation, rather than trying a completely 

different approach.  Alternatively, students might try different combinations of the information 

given in the problem (such as adding or subtracting the numbers presented in the problem) to see 

what answers those produced. 

It should also be noted that students were very consistent with each other in how they 

approached the initial setting up of their equations.  This, again, is not surprising, since all were 

recruited from Northern Virginia schools and had probably been taught algebra in a similar 

fashion.   

Math practitioners were much more diverse in their problem solving processes.  In many cases, 

the methods they used were actually easier than those used by students.  This may seem almost 

counterintuitive since much of the research in expert knowledge reports how much deeper and 

richer expert knowledge is than that of novices.  Therefore, one might suspect that practitioners 

would use that deeper, richer knowledge to come up with more sophisticated problem solving 

techniques.  Instead, the reverse was often the case. 

For example, one of the problems given to the participants was to find two consecutive integers 

that add to 71.  Students solved this problem by assigning the variables X and X+1 to the 

integers, adding them to get 2x+1=71, subtracting 1 to get 2x = 70, dividing both sides by 2 to 

get X = 35 and then adding 1 to get that the greater integer was 36.  Practitioners typically solved 

this problem by dividing 71 by 2 to get 35.5 and then adding and subtracting .5 to 35.5 to get 35 

and 36. 

Another common strategy that math practitioners used was to categorize the problem types so 

that they could reuse strategies.  It was common to hear in the session recordings statements such 

as “Oh, this is one of those consecutive integer problems where I divide by 2 and then ‘seesaw’ 

the number to get the two integers.” or “This is one of those problems with a fixed amount and a 

variable amount, so I’m going to subtract the fixed amount and divide by the coefficient of the 

variable.”  This is very consistent with findings reported by Weiser and Shertz (1983) that 

experts categorize problems by the types of problem solving processes that will be used to solve 

them. 
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Another process that practitioners engaged in was to think about constraints on what a reasonable 

answer might be.  For example, it was noted that for problems that required the participant to 

find quantities like number of people or number of products sold, the answer would be an 

integer, whereas if the problem asked about a length of time, the answer could be fractional. 

Practitioners also gauged what would be a reasonable answer to real world problems based on 

what they knew about the world.  This helped them validate whether the answer to their 

calculations looked reasonable. 

Math practitioners also relied on heuristics to make the problems easier to solve.  The above 

description of the process of finding consecutive integers that add to a number is one such 

heuristic.  Another was to multiply decimals by powers of ten to get rid of the decimals to make 

computations easier.  When asked to find the perimeter of a rectangle, which can be expressed as 

2L (two times the length) * 2W (two times the width), practitioners typically found half the 

perimeter instead using L + W. 

It should be noted that the heuristics used by experts were derivable from the formal algebraic 

methods.  For example, the heuristic used to find two consecutive integers that add to 71 

consisting of dividing 71 by 2 and then adding and subtracting .5 is derivable from the formal 

algebraic step of 2x + 1 = 71.  If we divide by 2 at that point, we get x + .5 = 35.5 and if we 

subtract the .5 as the practitioners did, we get 35 and if we add .5 to get x+1 on the left, we get 

36 on the right. 

While the general procedures used by practitioners to arrive at the actual answers to the problems 

varied, there were some common themes. The general process flowed as follows: 

1. Read problem to pick out relevant information and what is being asked as the answer 

2. Set up variables 

3. Set up formula 

4. Execute formula to get answer 

5. Check answer to problem requirements, including plug back into equation 

The heuristics and other strategies cited above were integrated into this overall process, often in 

service of simplifying what needed to be done.  For example, the consecutive integer strategy 

was employed in the set up formula step of the above process.  Real world considerations about 

what a reasonable answer might look like was integrated into the first step.  Using previous 
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problem types to define strategies involves using step 1 to recognize the similarities between the 

problems, step 2 to adapt the variables to the current problem, and step 3 to set up the formula to 

be solved to arrive at the answer. 

It is worth noting that when problems were of a more traditional “algebraic” nature and did not 

depict a real world scenario, practitioners resorted to traditional algebraic methods.  For example, 

one of the problems presented was “Five times the sum of eight and some number yields an 

amount equal to 140. What is the number?”  In cases like this, both students and practitioners 

used the equation 5(8+x)=140 to solve for the unknown number. 

Overall, math practitioners spent more time than students did on initial analysis of the problem 

and used a more conceptual rather than procedural problem solving process.  Both of these 

findings are consistent with findings reported by Leddo et al. (1990) that experts spend more 

time than novices in initial analysis of problems and approach problems more conceptually, 

rather than procedurally, when compared to novices. 

Discussion 

The results of the present project suggest that students tend to solve algebraic problems using 

formal algebraic methods, a process similar to a procedural method as described in Anderson’s 

ACT-R framework.  While generally efficient and accurate, this method can run into difficulties 

when procedures used are not appropriate for the given problem or the students make errors in 

computations.  Then, they are often stuck or give an incorrect answer, thinking it is the correct 

one. 

Math practitioners, on the other hand, tend to spend more upfront time analyzing problem 

features, the required answers, and information given before assigning variables and selecting 

problem solving methods.  They use a more diverse range of problem solving approaches, all of 

which are derivable from formal algebraic methods, and often rely on simpler heuristics for 

solving problems than students do. Practitioners often check their answers for reasonableness, 

conformity for what the problem is asking and numerical accuracy by plugging the answers back 

into the formulas they use to solve the problems. Practitioners also recognize patterns and 

similarities across problems and use those patterns and similarities to help them select formulas 

to solve the problems.   As such, math practitioners behave more like the experts studied in the 

Leddo et al. (1990) project in which experts were shown to be guided by mental models and 

other more conceptual reasoning strategies. 
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The implication from the results of the present study is that mathematics instruction can be 

enhanced by going beyond the traditional formal problem solving processes that students are 

taught (and which are necessary to learn) and include instruction that enables students to build 

the abstract reasoning processes that math practitioners have.  

Methods for developing abstract reasoning processes in students may be suggested by examining 

the problem solving world practitioners operate in compared to that in which students operate. 

Students learn math in courses, such as pre-algebra, algebra 1, geometry, etc.  Each course is 

broken into units, e.g., linear equations, quadratics.  Within each unit, students are told what 

problem types they will learn to solve and what formulas they will need to solve them.  When 

they are given homework and unit tests, the problem types and formulas needed match what is 

covered in the lessons.  Even though students do get midterm and final exams that cover multiple 

topics, they typically still fit within the neat framework of algebra, pre-algebra, etc. 

Math practitioners operate in a different world. An actuary is asked to create a retirement plan or 

calculate what premiums should be charged for life insurance.  There is no “formula” for 

determining what to charge people for life insurance.  Answering that question takes into account 

a number of variables about the person being insured, the amount of the insurance, the cost 

structure of the insuring company and a host of other factors. In other words, an actuary cannot 

just jump into the problem, set up an equation and solve for X.  The actuary has to think about 

what variables impact the answer, how they interact with each other, what are the unknowns and 

how they might affect the solution, etc. In other words, the actuary needs to do considerable 

upfront thinking and information gathering before s/he can even begin to set up formulas and 

perform calculations.  It is only logical that, after spending years approaching professional 

problems this way, an actuary would approach real-world algebra problems using a similar 

process. 

Similarly, the amount of data that actuaries (and other practitioners) deal with is enormous.  The 

number of potential computations an actuary (and other practitioners) have to make is also 

enormous. It is logical that, as a practical matter, practitioners would look for ways to reduce 

complexity and simplify problem solving.  It is also logical that practitioners would seek 

heuristics to simplify algebraic problem solving as well. 

Finally, if practitioners are used to dealing with large, complex and time consuming problems, it 

is logical that they would look for similar patterns in the problems they solve in order to apply 

proven solutions for one problem to a similar problem. We see this professionally all the time.  

For example, lawyers use model contracts that they then adapt to specific clients’ needs in order 
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to reduce the time and effort required to draft a new contract.  It is only logical that practitioners 

would apply the same thinking to algebraic problem solving. 

The above analysis can be used to suggest teaching methods to build in students the kinds of 

conceptual problem solving skills that practitioners have. One method is to give students more 

experience working with ill-defined problems in real-world settings, similar to what math 

practitioners deal with in their everyday jobs.  In schools, project-based learning (cf. Indrawan, 

Jalinus, and Syahril, 2018) can provide such an opportunity. In Northern Virginia, we have seen 

very limited use of project-based learning, and typically, the emphasis is on English or foreign 

languages. Math-related project-based learning assignments could involve such things as setting 

policy rates for life insurance (based on life expectancy, death benefit amount, corporate 

overhead and profit, etc.) 

It was noted that practitioners typically rely heavily on heuristics.  While formal methods are 

important to learn as the basis for deriving heuristics, we find very little systematic teaching of 

heuristics or how to derive them in mathematics classrooms.  Sometimes, students report the 

opposite:  their teachers insist on students solving problems using the methods the teachers 

taught with no room for individual creativity in the problem solving process. We propose, 

insead, that after teaching formal methods, teachers should teach students shortcuts and other 

heuristics while showing how they can be derived from the more formal methods they just 

learned. 

Another strategy used by practitioners is recognizing problem solving patterns.  Here students 

would learn different problem types or problems and the solutions associated with each.  Then, 

when they see similar problem patterns, they will know how to solve them. We have experience 

working with this strategy.  When working with students studying for the SAT, a test taken by 

students applying to college, Leddo, Sangela and Bekkary (2021) found that students who were 

taught the different patterns for circle problems found in the SAT scored higher than those who 

learned the formula-based approach to solving SAT circle problems published by the College 

Board, makers of the SAT test.  A similar approach can be taken when teaching other math 

concepts. 

Conclusion 

The present study suggests that math practitioners employ a variety of problem solving processes 

and reasoning skills that math students do not have.  These processes and reasoning skills are 

likely to have developed as a result of the practitioners’ experience working with complex, ill-

structured problems in their jobs.  We hypothesize that students may be able to learn similar 
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skills by replicating some of the problem solving conditions that practitioners face.  Several 

potential techniques have been proposed.  These should be the focus of future research and, if 

successful, be incorporated into the teaching of mathematics in K-12. 
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