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ABSTRACT 

In previous papers, we have described a methodology of using meta-regression and Bayesian 

statistics to create a machine learning model that combines scientific research on wellness and 

longevity and responses from people’s lifestyle questionnaires to make recommendations on 

what people can do to live longer and healthier.  One of the goals of this software is to use data 

collected from logs of people’s lifestyle choices to update the model and increasingly improve 

and personalize the recommendations made. One challenge faced here is that the elapsed time 

between lifestyle choices and the onset of disease may take years, making it difficult to make 
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timely recommendations based on the effectiveness of what people are implementing in their 

daily lives. One way to address this challenge is to measure risk factors for disease rather than 

occurrence of disease itself as properly-selected risk factors may be more sensitive to changes in 

lifestyle choices while still being highly predictive of the risk of contracting major diseases.  The 

present paper provides a methodology of using such risk factors in a machine learning model to  

recommend interventions for what people can do to live longer and healthier lives. 

Introduction 

Our project team has been working on a software program that takes the latest scientific research 

in wellness and longevity and people’s responses to lifestyle surveys and uses machine learning 

to make recommendations to people on what they can do to live longer and be healthier (Jain et 

al., 2023; Lu et al., 2023). The idea behind the machine learning component is that an initial 

model will be built based on a review of hundreds of scientific results, which will be combined 

and be able to make personalized recommendations based on a person’s characteristics such as 

age, gender, individual and family medical history, etc. and lifestyle habits (e.g., what they eat, 

whether and how much they exercise, how much sleep they get, whether and how much they 

smoke or drink alcohol). As people use the software, they will enter their ongoing lifestyle habits 

and updated health outcomes, which the machine learning model will use to optimize its 

recommendations to the user based on an analysis of what works best for that person. 

In a previous paper (Lu et al., 2023), we proposed a combination of meta-regression (van 

Houwelingen et al., 2002) and Bayesian statistics (Bishop & Tipping, 2003) to process the 

scientific research data and survey responses. In the first pass of this analysis, meta-regression 

was proposed as a way to combine the results of single interventions such as eating a particular 

type of food (e.g., vegetables) on a specific outcome (e.g., cardiovascular disease).  The use of 

meta-regression was motivated by the fact that different research papers involve different sample 

sizes, project lengths, participant age ranges, ethnicities and genders, and report different 

outcomes (e.g., different degrees of risk reduction for the disease being investigated). Meta-

regression was seen as a way to combine these into an overall predictive model that could 

estimate the reduction in risk of a particular disease that would result if a person incorporated a 

given level of the intervention into his or her lifestyle. Using meta-regression, a different 

predictive model would be created for each independent variable and each health outcome. 

A major limitation of using meta-regression alone as the analytical method is that people are 

likely to combine different interventions in order to optimize lifespan and health outcomes. 

Someone who is committed to optimal health is likely to be interested in what foods to eat, what 

nutritional supplements to take, what types of exercises to perform, etc. This presents a challenge 

as most scientific research tends to focus on individual independent variables for the sake of 
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experimental control.  Researchers typically want to know what the effect of a specific 

independent variable is on a dependent variable and, therefore, introduce only that independent 

variable into the study and keep the other variables constant across conditions so as to increase 

the certainty that any change in the dependent variable can be attributed to the presence of the 

independent variable and not some confounding variable.  For example, a scientist interested in 

studying the effects of a particular diet on weight loss is likely to hold exercise constant because 

if participants are given a program involving both diet and exercise, it becomes unclear whether 

the weight loss was due to diet or exercise or some combination/interaction of both. 

People, on the other hand, who are seeking to increase their lifespans and improve their health 

are going to worry less about experimental control and more about increasing their outcomes.  As 

a result, they are likely to want to try multiple interventions in order to reap the benefits of each. 

The challenge here is that there is less known about how to quantify the benefits of combinations 

of interventions than single interventions. For example, if one has a very good diet, how many 

supplements does the person really need to take?  

In order to address this question, we conducted surveys of people, asking them about the 

different combinations of interventions they use and questions about their health (Lu et al., 

2023). The goal was to collect data that would enable us to model how combinations of 

interventions impacted health.  We proposed that Bayesian analysis could be used to integrate the 

questionnaire data with the meta-regression analysis of the research literature results. In this 

analysis, the meta-regression results would serve as the priors for the Bayesian models and the 

survey results would then be used to update these models. 

Our ability to perform this integrated analysis is based on the premise that we have actual health 

outcome data. For example, if we want to predict the effects of exercise on the risk of heart 

disease, we need to have data on both a person’s exercise program and whether they have or get 

heart disease. When conducting an analysis of research papers or questionnaire responses, this is 

not a problem as these papers or responses contain data on whether the people being reported on 

have heart disease. 

However, the goal of our software is to continue to track people as they implement the 

recommendations the software provides and determine whether those recommendations are 

working by recording any changes in people’s health outcomes.  This potentially presents a 

problem. Developing heart disease or cancer is typically not an instantaneous outcome but one 

that evolves over a period of years and often unbeknownst to the person who is developing the 

condition.  Therefore, when tracking health outcomes, it is expected that on a week-to-week or 

month-to-month basis, people would be listing “none” when asked about whether they have heart 

disease or cancer, regardless of what lifestyle choices they are making. 
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This can potentially distort a machine learning model seeking to learn the relationship between 

lifestyle choices and health outcomes. If the input is always “none” with regard to a chronic and 

serious health outcome, the model then learns that lifestyle choices do not impact risk of disease.  

This is not only misleading but potentially dangerous as people may conclude that their lifestyle 

choices are healthy when they are not. 

One way to address this problem is to measure predictors of disease that are both measurable and 

are responsive, within reasonable timeframes, to lifestyle choices.  If a quantitative relationship 

can be established between the risk factor and the disease, then the software can provide updated 

estimates of risk of disease that are based on changes in the observed risk factors.  

Using disease indicators offers some potential advantages: 

1. Enhanced predictive accuracy.  Disease indicators, such as biomarkers and physiological 

measurements, can offer a more granular view of an individual’s health status than just 

measuring whether or not a person has a disease.  This finer level of detail can lead to 

improved predictive accuracy (Bhadra et al., 2019). 

2. Early disease detection. Using disease indicators can allow models to detect individuals at 

risk before actual symptoms begin to show. This can enable earlier interventions and 

preventative measures (Chen et al., 2020)/ 

3. Personalized risk assessment. Disease indicators enable the customization of risk 

assessments, allowing for more personalized healthcare recommendations and 

interventions (Hosny et al., 2018). 

In deciding to use indicators as a way to predict diseases, there are some challenges that need to 

be taken into consideration.  These include: 

1. Data availability and Quality. The availability and quality of disease indicator data can 

pose significant challenges. Ensuring access to comprehensive and reliable datasets is 

crucial (Drew et al., 2019).  

2. Interpretability. Models incorporating disease indicators may be less interpretable, 

making it challenging for healthcare professionals to understand the rationale behind risk 

predictions (Bahrampour et al., 2019).  

3. Privacy Concerns. The use of sensitive health data raises privacy and ethical concerns. 

Appropriate data anonymization and protection measures must be in place (Chen et al., 

2020).  



International Journal of Social Science and Economic Research 

ISSN: 2455-8834 

Volume:08, Issue:09 "September 2023" 

 

www.ijsser.org                              Copyright © IJSSER 2023, All rights reserved Page 3025 
 

4. Bias and Generalizability. Models trained on indicator data may be prone to bias if the 

data is not representative. Ensuring model generalizability across diverse populations is 

essential (Rajkomar et al., 2019). 

Using disease indicators has shown promise in the field of medical machine learning. For 

example, Hosny et al. (2018) developed a machine learning model that utilized disease 

indicators, including genetic markers and early symptoms, to predict the risk of cardiovascular 

disease. Their model achieved superior performance in early detection compared to traditional 

risk assessment methods. Additionally, Drew et al. (2019) explored the integration of electronic 

health records and imaging data as disease indicators to predict the risk of specific cancers. They 

demonstrated that combining these diverse data sources resulted in more accurate risk 

assessments. Chen et al. (2020) addressed the privacy concerns associated with disease indicator 

data by proposing federated learning techniques that allow models to be trained across multiple 

healthcare institutions without sharing patient-specific data. The remainder of the present paper 

is devoted to showing how disease indicators will be used in the longevity and wellness software 

being developed by METY Technology. 

Using Disease Indicators to Predict Risk of Contracting Diseases 

There are two major steps for incorporating risk factors into a predictive model for estimating the 

risk of contracting diseases.  The first is to identify the relevant predictors of diseases. Generally, 

this can be done from a review of the literature, and, fortunately, there tends to be a consensus on 

what these risk factors are.  The table below shows several major diseases and five known major 

risk factors for each. 

Table 1:  Risk Factors Associated with Major Diseases 

Heart 

disease 

Stroke Cancer Diabetes Depression Arthritis 

High blood 
pressure 

High Blood 
Pressure  Tobacco Use Family History 

Genetic 
Predisposition Age 

High 
cholesterol  

Smoking 
Exposure to 

Ultraviolet (UV) 
Radiation 

Excess Body 
Weight 

Traumatic Life 
Events Gender 

Diabetes 

Atrial 

Fibrillation Unhealthy Diet 

Unhealthy 

Diet 

Brain Chemistry and 

Imbalances Genetics 

Smoking 

Diabetes 
Physical 
Inactivity and 

Obesity 

Physical 

Inactivity 

Chronic Illness or 

Health Conditions 

Joint Injuries 

or Trauma 

Unhealthy 

lifestyle 

High 

Cholesterol 

Exposure to 

Carcinogens Age Substance Abuse 

Autoimmune 

Conditions 
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Inspection of the above table leads to some relevant observations when it comes to incorporating 

risk factors into a predictive model of diseases. First, some risk factors, such as high blood 

pressure or high cholesterol, overlap multiple diseases. This makes these important ones to 

collect data on, since these data can be used across different predictive models.  Second, some 

screening is necessary as some risk factors are hard to quantify or operationally define. For 

example, “unhealthy diet” is a risk factor for both cancer and diabetes. However, “unhealthy 

diet” is hard to define in a way that can be readily measured.  Moreover, diet itself can impact 

other risk factors such as cholesterol levels, which themselves are risk factors. In such cases, risk 

factors such as “unhealthy diet” need to be further defined. What may be a better approach in 

cases like these, where diet itself is a composite of all foods eaten, is to look at the component 

items that make up diet such as fruit and vegetable consumption and look at the relationship 

between those and diseases.  

Another example is when a disease itself is a risk factor for another disease as is the case with 

diabetes, which is a risk factor for stroke and heart disease. In such cases, it may not be possible 

to measure the onset of diabetes in real time.  Instead, one may have to quantify the risk of 

diabetes and once that risk is quantified, see how that risk impacts the risk of heat disease or 

stroke.  

A third example is where a risk factor may be stated in overly broad terms, such as “unhealthy 

lifestyle,” a risk factor for heart disease.  In such cases, the term “unhealthy lifestyle” needs to be 

operationally defined so as to lend itself to be measurable and quantifiable when it comes to 

predicting diseases. 

Once the risk factors have been selected and appropriately defined so that they can be measured, 

the next step is to quantify the relationship between the risk factor and disease.  In some cases, 

there may be a straightforward formula that can accept the quantified risk factor and output the 

risk of the disease.  One example of this is the Framingham Risk Score that predicts the 10-year 

risk of coronary heart disease from a person’s systolic blood pressure. Here, the formula is risk =  

1 – (0.987(SBP-120)), where SBP stands for systolic blood pressure (Whelton et al., 2018) . 

In other cases, different levels of the risk factor get lumped into categories and then the 

relationship between risk factor categories and disease is quantified. An example of this is shown 

in Wilson et al. (1998). Wilson et al. also seek to quantify the risk of coronary heart disease using 

blood pressure as a risk factor.  Here, Wilson et al. developed four categories of systolic blood 

pressure: normal, high normal, hypertension stage 1, and hypertension stage 2-4. People were 

categorized based on their systolic blood pressures, with <130 considered normal, 130-139 

considered high normal, 140-159 considered hypertension 1 and above 160 considered 

hypertension 2-4. Instead of calculating absolute risk of coronary heart disease, Wilson et al. 
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calculate relative risk ratios of getting coronary heart disease with those in the normal category 

considered the reference point. Accordingly, the relative risk ratios for different levels of blood 

pressure are 1 for normal, 1.32 for high normal, 1.73 for hypertension 1 and 1.92 for 

hypertension 2-4. 

Conclusion 

The process of using risk factors to build a machine learning model to estimate the likelihood of 

contracting a disease involves several steps. First, the literature is reviewed to establish what risk 

factors are most important to/diagnostic of the diseases of interest.  Next, the risk factors need to 

be evaluated to ensure that they are sufficiently operationalized so that quantifiable data 

regarding them can be measured. This step may involve some operationalization on the part of 

the researchers. 

Once the risk factors have been selected and quantified, there needs to be a method for relating 

the data measured from the risk factor to a prediction of the likelihood of disease. In an idealized 

case, a formula can be constructed, similar to the Framingham Risk Score, that uses the actual 

measurement to quantify the risk. In cases where this is not possible, categorical data can be used 

instead, whereby the raw data is assigned to a category and then the category is associated with a 

prediction of likelihood of occurrence of the disease.  

Once this model is developed, the machine learning model is trained on data that pairs 

interventions (such as diet, exercise, etc.) and the associated changes in risk factor levels (e.g., 

blood pressure) and these changes in risk factor levels are used to stand in for likelihood of 

contracting a particular disease. In doing so, changes health outcomes can be recorded on a 

regular basis, thus providing dynamic predictions ofrisk of disease as a result of the daily 

interventions a person is using. This enables people to fine tune their lifestyle choices, and, in 

doing so, optimize their health and longevity. 
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