ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

# RASHTRIYA UCHCHATAR SHIKSHA ABHIYAN (RUSA) AND ACCESS TO HIGHER EDUCATION

Dr. Ummed Singh<sup>1</sup> and Aryan Chanda<sup>2</sup>

<sup>1</sup>Assistant Professor, Department of Economics, University of Rajasthan, Jaipur.

<sup>2</sup>Master's student, Department of Economics, University of Rajasthan, Jaipur.

DOI: 10.46609/IJSSER. 2023.v08i12.020 URL: https://doi.org/10.46609/IJSSER.2023.v08i12.020

Received: 13 November 2023 / Accepted: 20 December 2023 / Published: 3 January 2024

### ABSTRACT

The paper attempts to study the accessibility to higher education in the context of the Rashtriya Uchchatar Shiksha Abhiyan (RUSA) Scheme in India. With an increasing demand for higher education, particularly among marginalized and underrepresented communities, the RUSA scheme stands out as a significant initiative aimed at improving accessibility and equity in higher education. Beginning by overview of higher education in India, the paper sheds light on disparities in access and participation. The paper evaluates the effect of RUSA interventions during its first initial phase (RUSA 1.0) on indicators of accessibility such as enrollment rates, average enrollment per college, college density, and pupil-teacher ratio. To analyze the extent of variation and asymmetry in key indicators related to higher education the statistical measures such as the coefficient of variation and skewness have been applied and to analyze the equality of means across these indicators, the paper used the ANOVA and Welch's F-tests.

Key words: RUSA, Gross Enrollment Ratio, ANOVA and Welch's F-tests

#### Introduction

India has one of the largest higher education systems in the world with 993 Universities, 39,931 colleges and 10,725 Stand Alone Institutions. Around 94% of students pursuing higher education are registered in State universities. Before the implementation of RUSA, the central government primarily emphasized premier institutions like IITs, IIMs, and central universities, often neglecting state institutions, which were heavily dependent on financial support from state governments. Central government's fund allocations were mainly directed towards the establishment of more Indian Institutes of Technology (IITs), Indian Institutes of Management, and Central universities. Approximately 150 centrally-funded institutions, serving less than 6%

ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

of the total student population, commanded the lion's share of funding disbursed by central government. State government institutions were facing a significant challenge due to a shortage of funds, which posed a considerable obstacle to expanding access to higher education, especially for marginalized sections of society and remote areas. Compounding the issue, investment from state governments declined over the years, as higher education remains a low-priority sector. Despite serving as the cornerstone of higher education in India, state institutions got inadequate attention and resources.

Significant reforms within the higher education sector gained momentum with the implementation of the Rashtriya Uchchatar Shiksha Abhiyan (RUSA) by the Ministry of Human Resource Development, Government of India, in 2013. This initiative aimed at revitalizing state higher education institutions in India, elevating them to the status of centers of excellence and promoting affordable education for all. In fact, RUSA was launched with the main objective of improving the access, equity, and quality in higher education institutions in the country. One of its key components of this scheme is to provide financial assistance to state universities and colleges to enhance their infrastructure, faculty development, and institutional capacity. By doing so, RUSA aims to bridge the gap in educational opportunities and ensure that students from all backgrounds have access to quality higher education in the country.

To achieve these objectives, RUSA scheme has the provision of providing financial support to establish new universities and clusters by upgrading existing colleges, establishing new model degree colleges and professional colleges and offering infrastructural support to universities and colleges. Additionally, it provides assistance for faculty recruitment, faculty improvement programs, leadership development for educational administrators, and skill training and vocational education to students. Its efforts are geared towards the overall development of the states' higher education system. A notable difference between RUSA funding and the previous model lies in its method of planning. Unlike the earlier top-down approach, RUSA does not allocate funds to institutions centrally; instead, it empowers institutions to devise their own plans i.e., funding flows from the bottom to the top. Prior to RUSA scheme the institutions often encountered challenges where they formulated plans but did not receive the full amount or faced delays, resulting in underutilization of funds.

However, under RUSA all stakeholders are informed about the allocated funds enabling them to plan effectively. Thus, strategic planning becomes an integral aspect of RUSA in which all three key stakeholders—the institution, the State and the Centre—play their respective roles. Institutions create their 'Institutional Developmental Plan' and submit it to the State Nodal body for further action. From 2015-16 to 2019-20, the Department of Higher Education, Government of India, experienced a noteworthy Compound Annual Growth Rate (CAGR) of 10.8 percent in expenditure. There has been an increased allocation towards schemes aimed at enhancing

ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

quality, such as RUSA, EQUIP, and EAP, along with specific initiatives focusing on faculty development, research, innovation, digital learning, and more. While grants and support to institutes of national importance and autonomous colleges still claim the largest share of funding, there has been a slight decline in percentage allocation over time, dropping from 68 percent in FY 18 to 56 percent in FY 20.

#### **Data Analysis and Discussion**

Over the last decade, there has been a significant focus on increasing access and make higher education accessible to each section of the society. The table 1 and 2 provides the overview of access to higher education for the 2014-15 to 2018-19 period through presenting the state-wise population and enrolment in the age group of 18-23 years. The rising population (table 1) indicates a growing demand for education, expanding educational infrastructure and resources to accommodate this demand. It entails the allocation of adequate resources for the regions with higher student enrollments to ensure equal access. The mean, standard error, standard deviation, and skewness values provide statistical insights into the distribution and variability of the enrollment data across the years. These regional variations in enrollment figures can help in targeting interventions and policies to address disparities and improve educational outcomes.

|                   | 2014-15   | 2015-16   | 2016-17   | 2017-18   | 2018-19   |
|-------------------|-----------|-----------|-----------|-----------|-----------|
| All-India         | 141045558 | 141290793 | 141537252 | 141829528 | 142078501 |
| Andhra Pradesh    | 5655372   | 5601939   | 5548693   | 5495217   | 5441669   |
| Arunachal Pradesh | 163087    | 162040    | 160988    | 159922    | 158845    |
| Assam             | 3680475   | 3696944   | 3713244   | 3729138   | 3744693   |
| Bihar             | 11004460  | 11202454  | 11403681  | 11607454  | 11814017  |
| Chhattisgarh      | 3062881   | 3084628   | 3106323   | 3127770   | 3149023   |
| Goa               | 167756    | 171060    | 173315    | 177298    | 181439    |
| Gujarat           | 7168479   | 7185240   | 7201594   | 7217084   | 7231855   |
| Haryana           | 3185493   | 3185459   | 3185213   | 3184553   | 3183546   |
| Himachal Pradesh  | 753727    | 744639    | 735616    | 726614    | 717648    |
| Jharkhand         | 3712100   | 3751369   | 3790851   | 3830303   | 3869791   |
| Karnataka         | 7191845   | 7122040   | 7052447   | 6982633   | 6912759   |
| Kerala            | 3080703   | 3051307   | 3021991   | 2992566   | 2963104   |
| Madhya Pradesh    | 8728206   | 8787661   | 8846960   | 8905538   | 8963556   |
| Maharashtra       | 13375090  | 13340997  | 13306153  | 13269732  | 13232016  |
| Manipur           | 292609    | 290731    | 288846    | 329418    | 327201    |
| Meghalaya         | 346557    | 344333    | 342100    | 339836    | 337549    |
| Mizoram           | 131397    | 130552    | 129705    | 128848    | 127979    |
| Nagaland          | 249167    | 247565    | 245957    | 244329    | 242681    |
| Odisha            | 4670851   | 4655573   | 4640028   | 4623929   | 4607379   |

#### Table 1: State-wise Population in the age group of 18-23 years

#### ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

|                           | 1          | 1          | 1          |            |            |
|---------------------------|------------|------------|------------|------------|------------|
| Puducherry                | 146637     | 151524     | 155259     | 160906     | 166793     |
| Punjab                    | 3291045    | 3248003    | 3205329    | 3162828    | 3120572    |
| Rajasthan                 | 8595816    | 8706717    | 8818503    | 8930612    | 9043202    |
| Sikkim                    | 79160      | 78651      | 78139      | 77623      | 77099      |
| Tamil Nadu                | 7415342    | 7300716    | 7187371    | 7074857    | 6963333    |
| Telangana                 | 4095944    | 4057244    | 4018607    | 3979862    | 3941066    |
| Tripura                   | 441375     | 438541     | 435697     | 432816     | 429900     |
| Uttar Pradesh             | 24308393   | 24505255   | 24702585   | 24898805   | 25094366   |
| Uttarakhand               | 1226154    | 1218827    | 1211463    | 1203988    | 1196426    |
| West Bengal               | 10925358   | 10908527   | 10891236   | 10872798   | 10853436   |
| Andaman & Nicobar Islands | 45950      | 46909      | 47603      | 48639      | 49667      |
| Chandigarh                | 166661     | 173634     | 179685     | 187731     | 195852     |
| Dadra and Nagar Haveli    | 58077      | 59847      | 61090      | 63252      | 65406      |
| Daman and Diu             | 52304      | 54430      | 56683      | 59187      | 61686      |
| Delhi                     | 2207522    | 2237479    | 2267692    | 2298017    | 2328493    |
| Jammu and Kashmir         | 1362550    | 1340857    | 1319420    | 1298156    | 1277094    |
| Mean                      | 4029672.66 | 4036676.91 | 4043716.20 | 4052064.54 | 4059175.46 |
| Standard Deviation        | 5137040.98 | 5166540.02 | 5196815.88 | 5226401.46 | 5257344.54 |
| CV (%)                    | 127.48     | 127.99     | 128.52     | 128.98     | 129.52     |
| Skewness                  | 2.14       | 2.16       | 2.18       | 2.20       | 2.22       |

Source: AISHE reports

### Table 2: Enrolment in Age Group 18-23 years

|                   | 2014-15  | 2015-16  | 2016-17  | 2017-18  | 2018-19  |
|-------------------|----------|----------|----------|----------|----------|
| All-India         | 34211637 | 34584781 | 35705905 | 36642378 | 37399388 |
| Andhra Pradesh    | 1767086  | 1724538  | 1799433  | 1697282  | 1760830  |
| Arunachal Pradesh | 46116    | 46452    | 46564    | 47464    | 47168    |
| Assam             | 546265   | 570955   | 640270   | 678344   | 700163   |
| Bihar             | 1529851  | 1602860  | 1645518  | 1514595  | 1607008  |
| Chhattisgarh      | 447915   | 466030   | 500046   | 574861   | 586924   |
| Goa               | 46457    | 47266    | 48669    | 49641    | 54680    |
| Gujarat           | 1435209  | 1487129  | 1458104  | 1453255  | 1478052  |
| Haryana           | 877713   | 831659   | 925290   | 913443   | 928893   |
| Himachal Pradesh  | 234917   | 241705   | 270210   | 275708   | 283860   |
| Jharkhand         | 572273   | 581643   | 671037   | 688722   | 739484   |
| Karnataka         | 1896905  | 1857946  | 1871294  | 1943856  | 1988494  |
| Kerala            | 884451   | 939155   | 1033143  | 1082917  | 1095842  |
| Madhya Pradesh    | 1712419  | 1725182  | 1773253  | 1885479  | 1929344  |
| Maharashtra       | 3736155  | 3987312  | 4016309  | 4131757  | 4230326  |
| Manipur           | 105128   | 99340    | 101062   | 104680   | 110377   |
| Meghalaya         | 71171    | 71567    | 80292    | 83822    | 86931    |
| Mizoram           | 30564    | 31463    | 31719    | 29495    | 32838    |
| Nagaland          | 38970    | 36892    | 40762    | 43557    | 45462    |

www.ijsser.org

#### ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

| Odisha                      | 826820     | 914675     | 972285     | 1015777    | 1019192    |
|-----------------------------|------------|------------|------------|------------|------------|
| Puducherry                  | 67381      | 65412      | 66918      | 73061      | 77342      |
| Punjab                      | 892820     | 878479     | 917550     | 959536     | 919576     |
| Rajasthan                   | 1720390    | 1761460    | 1808451    | 1936204    | 2084413    |
| Sikkim                      | 24023      | 29550      | 29110      | 29000      | 41572      |
| Tamil Nadu                  | 3352881    | 3235354    | 3371351    | 3440945    | 3414196    |
| Telangana                   | 1479088    | 1474235    | 1438737    | 1419307    | 1426461    |
| Tripura                     | 74054      | 74035      | 83244      | 91681      | 82703      |
| Uttar Pradesh               | 6066920    | 6003076    | 6157971    | 6455375    | 6469367    |
| Uttarakhand                 | 415768     | 405386     | 404686     | 437150     | 468255     |
| West Bengal                 | 1900939    | 1926500    | 2015996    | 2035981    | 2097410    |
| Andaman and Nicobar Islands | 10669      | 11024      | 10857      | 10600      | 11511      |
| Chandigarh                  | 93469      | 99992      | 100849     | 105829     | 99009      |
| Dadra and Nagar Haveli      | 4848       | 5454       | 5626       | 5776       | 6102       |
| Daman and Diu               | 3000       | 3122       | 3119       | 3090       | 3403       |
| Delhi                       | 960834     | 1014876    | 1027806    | 1064406    | 1077556    |
| Jammu and Kashmir           | 337888     | 332556     | 337850     | 359230     | 394099     |
| Mean                        | 1900638.72 | 1921362.81 | 1983646.83 | 2035672.33 | 2077728.64 |
| Standard Deviation          | 5683004.94 | 5742700.06 | 5925903.62 | 6083698.51 | 6206057.52 |
| CV (%)                      | 299.01     | 298.89     | 298.74     | 298.85     | 298.69     |
| Skewness                    | 5.56       | 5.56       | 5.57       | 5.56       | 5.57       |

**Source:** AISHE reports

The Gross Enrollment Ratio (GER) serves as a crucial indicator for assessing access to higher education, educational opportunities, and inclusiveness. That is why the government have made efforts to expand the access by opening new higher education institutions and upgrading the existing ones and increasing the existing capacity of the institutions which have resulted in almost doubling of the GER, with an increase from19.4 in 2010-11 to 26.3 in 2018-19. The Gross Enrollment Ratio (GER) in higher education in India has experienced significant growth over the past six years. The enrollment has increased at a Compound Annual Growth Rate (CAGR) of over 2.3%, rising from 34.2 million (342 lakhs) in 2014-15 to 37.4 million (374 lakhs) in 2018-19 (fig.1)





ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

During the 2014-15 to 2018-19, the CAGR of universities in India was 6.9 percent, whereas for colleges it was 0.9 per cent. The growth of higher education institutions in India has been propelled by government reforms aimed at promoting private investments in the sector. During the 2014-15 to 2018-19, there has been a significant increase in the Gross Enrolment Ratio (GER) for higher education in India, with overall enrolment growing at a CAGR of over 2.3 percent, rising from 342 lakhs in 2014-15 to 374 lakhs in 2018-19. Despite this growth, the rate of higher education uptake in India remains considerably lower than in countries like China (44 percent) and Brazil (50 percent) as of 2019.

| State/UT          | 2014-15 | 2015-16 | 2016-17 | 2017-18 | 2018-19 |
|-------------------|---------|---------|---------|---------|---------|
| Andhra Pradesh    | 31.20   | 30.78   | 32.40   | 30.90   | 32.40   |
| Arunachal Pradesh | 28.30   | 28.67   | 28.90   | 29.70   | 29.70   |
| Assam             | 14.80   | 15.44   | 17.20   | 18.20   | 18.70   |
| Bihar             | 13.90   | 14.31   | 14.40   | 13.00   | 13.60   |
| Chhattisgarh      | 14.60   | 15.11   | 16.10   | 18.40   | 18.60   |
| Goa               | 27.70   | 27.63   | 28.10   | 28.00   | 30.10   |
| Gujarat           | 20.00   | 20.70   | 20.20   | 20.10   | 20.40   |
| Haryana           | 27.60   | 26.11   | 29.00   | 28.70   | 29.20   |
| Himachal Pradesh  | 31.20   | 32.46   | 36.70   | 37.90   | 39.60   |
| Jharkhand         | 15.40   | 15.50   | 17.70   | 18.00   | 19.10   |
| Karnataka         | 26.40   | 26.09   | 26.50   | 27.80   | 28.80   |
| Kerala            | 28.70   | 30.78   | 34.20   | 36.20   | 37.00   |
| Madhya Pradesh    | 19.60   | 19.63   | 20.00   | 21.20   | 21.50   |
| Maharashtra       | 27.90   | 29.89   | 30.20   | 31.10   | 32.00   |
| Manipur           | 35.90   | 34.17   | 35.00   | 31.80   | 33.70   |
| Meghalaya         | 20.50   | 20.78   | 23.50   | 24.70   | 25.80   |
| Mizoram           | 23.30   | 24.10   | 24.50   | 22.90   | 25.70   |
| Nagaland          | 15.60   | 14.90   | 16.60   | 17.80   | 18.70   |
| Odisha            | 17.70   | 19.65   | 21.00   | 22.00   | 22.10   |
| Puducherry        | 46.00   | 43.17   | 43.10   | 45.40   | 46.40   |
| Punjab            | 27.10   | 27.05   | 28.60   | 30.30   | 29.50   |
| Rajasthan         | 20.00   | 20.23   | 20.50   | 21.70   | 23.00   |
| Sikkim            | 30.30   | 37.57   | 37.30   | 37.40   | 53.90   |
| Tamil Nadu        | 45.20   | 44.32   | 46.90   | 48.60   | 49.00   |
| Telangana         | 36.10   | 36.34   | 35.80   | 35.70   | 36.20   |
| Tripura           | 16.80   | 16.88   | 19.10   | 21.20   | 19.20   |
| Uttar Pradesh     | 25.00   | 24.50   | 24.90   | 25.90   | 25.80   |

#### **Table 3: State-wise Gross Enrolment Ratio**

www.ijsser.org

#### ISSN: 2455-8834

|                        |       | _     | -     | -     | -     |
|------------------------|-------|-------|-------|-------|-------|
| Uttarakhand            | 33.90 | 33.26 | 33.40 | 36.30 | 39.10 |
| West Bengal            | 17.40 | 17.66 | 18.50 | 18.70 | 19.30 |
| Andaman and Nicobar    |       |       |       |       |       |
| Islands                | 23.20 | 23.50 | 22.80 | 21.80 | 23.20 |
| Chandigarh             | 56.10 | 57.59 | 56.10 | 56.40 | 50.60 |
| Dadra and Nagar Haveli | 8.30  | 9.11  | 9.20  | 9.10  | 9.30  |
| Daman and Diu          | 5.70  | 5.74  | 5.50  | 5.20  | 5.50  |
| Delhi                  | 43.50 | 45.36 | 45.30 | 46.30 | 46.30 |
| Jammu and Kashmir      | 24.80 | 24.80 | 25.60 | 27.70 | 30.90 |
| Lakshadweep            | 4.00  | 7.06  | 7.30  | 7.60  | 7.40  |
| All India              | 24.30 | 24.48 | 25.20 | 25.80 | 26.30 |
| Mean                   | 24.58 | 25.10 | 25.58 | 26.45 | 27.05 |
| Standard Deviation     | 11.19 | 11.38 | 11.29 | 11.21 | 11.42 |
| CV (%)                 | 45.52 | 45.34 | 44.14 | 42.38 | 42.22 |
| Skewness               | 0.80  | 0.58  | 0.65  | 0.48  | 0.46  |

Volume: 08, Issue: 12 "December 2023"

Source: AISHE reports

India has made significant strides in its Gross Enrollment Ratio (GER) for higher education in recent years. The GER for higher education rose from 19 percent in 2014 to 26.3 percent in 2018-19. However, there has been a notable decline in student participation following the completion of post-secondary education. As of 2018-19, nearly three-quarters of the population in the 18 to 23-year age bracket were not enrolled in post-secondary education. India's GER is substantially lower compared to its counterparts, such as Brazil (50.5 in 2016), Russia (81.8 in 2016), and China (51 in 2017).



Fig. 2 Trend in GER

ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

| Year    |      | ALL  |        | SC   |      |        | ST   |      |        |
|---------|------|------|--------|------|------|--------|------|------|--------|
|         | Both | Male | Female | Both | Male | Female | Both | Male | Female |
| 2014-15 | 24.3 | 25.3 | 23.2   | 19.1 | 20.0 | 18.2   | 13.7 | 15.2 | 12.3   |
| 2015-16 | 24.5 | 25.4 | 23.5   | 19.9 | 20.8 | 19.0   | 14.2 | 15.6 | 12.9   |
| 2016-17 | 25.2 | 26.0 | 24.5   | 21.1 | 21.8 | 20.2   | 15.4 | 16.7 | 14.2   |
| 2017-18 | 25.8 | 26.3 | 25.4   | 21.8 | 22.2 | 21.4   | 15.9 | 17.0 | 14.9   |
| 2018-19 | 26.3 | 26.3 | 26.4   | 23.0 | 22.7 | 23.3   | 17.2 | 17.9 | 16.5   |

### Table 4: Gross Enrolment Ratios (GER) in Higher Education in India

Source: Ministry of Education, Govt. of India

### **Table 5: Gross Enrolment Ratio by Social Groups**

| Year      | Overall Highe<br>GER | r Education | SC High | SC Higher Education GER |        | ST Higher Education GER |      |        |
|-----------|----------------------|-------------|---------|-------------------------|--------|-------------------------|------|--------|
|           | Overall              | Female      | Overall | male                    | Female | Overall                 | male | Female |
| 2018-19   | 26.3                 | 26.4        | 23      | 22.7                    | 23.3   | 17.2                    | 17.9 | 16.5   |
| 2014-15   | 21.5                 | 20.1        | 19.1    | 20                      | 18.2   | 13.7                    | 15.2 | 12.3   |
| %Increase | 22.3                 | 31.3        | 20.4    | 13.5                    | 28.0   | 25.5                    | 17.8 | 34.1   |

Source: Ministry of Education, Govt. of India

The table 4 and 5 provide data on the GER in higher education for different social groups over the years 2014-15 and 2018-19. The overall GER for higher education has increased from 21.5 in 2014-15 to 26.3 in 2018-19, marking a substantial increase of 22.3%. This indicates a significant improvement in the enrollment rate for higher education across all demographic groups during this period. The GER for SC students in higher education has increased from 19.1 in 2014-15 to 23 in 2018-19, representing a notable increase of 20.4%. This suggests an improvement in access to higher education for SC students over the years, although the rate of increase is slightly lower compared to the overall increase. The GER for ST students in higher education has increased from 13.7% in 2014-15 to 17.2% in 2018-19, registering a significant rise of 25.5%. Similarly, to SC students, this indicates progress in access to higher education. In terms of gender, there has been an improvement in GER for both male and female students across all demographic groups.

However, it's noteworthy that in both SC and ST categories, the GER for females is higher than for males, indicating a positive trend towards bridging the gender gap in access to higher education among these marginalized groups. The data suggests a positive trend in improving access to higher education for marginalized groups, particularly SC and ST students, as indicated by the notable increases in GER over the specified period. Furthermore, the higher GER for

ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

females compared to males within these groups reflects progress towards gender equity in higher education enrollment.

The promoting diversity and inclusivity within higher education institutions is essential for fostering a conducive learning environment. This includes implementing affirmative action policies to increase representation from marginalized communities, promoting cultural sensitivity and awareness, and mainstreaming disability-inclusive practices. Creating a welcoming and inclusive campus culture is crucial for nurturing talent and promoting social cohesion.



#### Fig. 3 Gross enrolment ratio by social groups

While India has experienced notable growth in GER in recent years, this progress has been sluggish compared to both its own requirements and other similar nations like China. Between 2010-11 and 2016-17, India's GER increased by only 6 percentage points, from 19.4 to 25.2 percent, whereas China's grew by 17 percentage points, rising from 25 to 42 percent during the same period. The limited access to higher education in India can be attributed to various factors, including the high cost of education, inadequate facilities, and a scarcity of quality institutions in certain regions of the country. To address the challenge of low student enrollment in higher education, the government has initiated a mission-oriented program known as Rashtriya Uchchatar Shiksha Abhiyan (RUSA), which aimed to achieve a 32 percent Gross Enrollment Ratio (GER) in higher education by 2022.

The clustering of institutions in specific regions has also contributed to the expansion of regional inequalities in enrollment The disparity in the number of colleges per lakh population is stark across different states in India. For instance, Bihar has as few as 7 colleges per lakh population, while Karnataka and Telangana boast 53 and 50 colleges respectively (as indicated in Table 6). Despite Uttar Pradesh, Bihar, and Madhya Pradesh collectively harboring 35 percent of the 18-

ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

23-year-old demographic (which comprises the college-going population), they possess a disproportionately low number of colleges per lakh population. Conversely, states like Karnataka, Andhra Pradesh, Telangana, Kerala, and Puducherry exhibit a high density of colleges, despite accounting for only 14 percent of the total share of the 18-23-year-old population in India.

Wide inter-state disparities are observed in concentration of colleges vis-a-vis population in the age group 18-23. Andhra Pradesh, Telangana, and Karnataka states consistently have high college densities (table 6) throughout the period with slight fluctuations. Telangana started with the highest density of 60 colleges in 2014-15 but experienced a decline over the years. Bihar, Jharkhand, and Delhi states have relatively low college densities, with minimal changes observed over the years. States like Arunachal Pradesh, Manipur, Nagaland, Sikkim, Mizoram, and

| State/UT          | 2014-15 | 2015-16 | 2016-17 | 2017-18 | 2018-19 |
|-------------------|---------|---------|---------|---------|---------|
| Andhra Pradesh    | 47      | 45.20   | 48      | 48      | 49      |
| Arunachal Pradesh | 17      | 17.28   | 19      | 19      | 23      |
| Assam             | 15      | 14.58   | 15      | 14      | 15      |
| Bihar             | 7       | 6.64    | 7       | 7       | 7       |
| Chhattisgarh      | 23      | 22.89   | 23      | 24      | 24      |
| Goa               | 33      | 32.15   | 32      | 32      | 31      |
| Gujarat           | 28      | 28.10   | 29      | 30      | 31      |
| Haryana           | 35      | 34.94   | 36      | 30      | 33      |
| Himachal Pradesh  | 43      | 46.73   | 51      | 45      | 47      |
| Jharkhand         | 8       | 8.74    | 8       | 8       | 8       |
| Karnataka         | 49      | 49.92   | 53      | 51      | 53      |
| Kerala            | 41      | 42.67   | 44      | 44      | 45      |
| Madhya Pradesh    | 26      | 25.72   | 25      | 24      | 24      |
| Maharashtra       | 35      | 34.25   | 32      | 33      | 33      |
| Manipur           | 29      | 29.92   | 30      | 26      | 28      |
| Meghalaya         | 18      | 18.30   | 18      | 18      | 19      |
| Mizoram           | 22      | 22.21   | 23      | 23      | 25      |
| Nagaland          | 26      | 26.26   | 26      | 27      | 28      |
| Odisha            | 23      | 23.11   | 23      | 23      | 23      |
| Puducherry        | 57      | 55.44   | 49      | 47      | 46      |
| Punjab            | 31      | 32.33   | 33      | 33      | 34      |
| Rajasthan         | 34      | 35.03   | 36      | 33      | 35      |
| Sikkim            | 18      | 20.34   | 22      | 22      | 25      |
| Tamil Nadu        | 33      | 32.44   | 33      | 35      | 35      |
| Telangana         | 60      | 60.48   | 59      | 51      | 50      |
| Tripura           | 11      | 11.63   | 12      | 12      | 12      |
| Uttar Pradesh     | 25      | 26.49   | 29      | 28      | 28      |

#### Table:6 State-wise College Density (2014-15 to2018-19)

www.ijsser.org

Copyright © IJSSER 2023, All rights reserved

ISSN: 2455-8834

| Uttarakhand            | 35    | 36.02 | 39    | 37    | 37    |
|------------------------|-------|-------|-------|-------|-------|
| West Bengal            | 10    | 9.92  | 11    | 12    | 13    |
| Chandigarh             | 16    | 14.40 | 14    | 13    | 13    |
| Dadra and Nagar Haveli | 15    | 13.37 | 13    | 13    | 12    |
| Daman and Diu          | 15    | 14.70 | 14    | 15    | 16    |
| Delhi                  | 9     | 8.54  | 8     | 8     | 8     |
| Jammu and Kashmir      | 24    | 24.54 | 24    | 23    | 23    |
| Mean                   | 27    | 28    | 28    | 28    | 28    |
| Standard Deviation     | 13.68 | 13.84 | 13.97 | 12.83 | 12.93 |
| CV (%)                 | 50.67 | 49.43 | 49.89 | 45.82 | 46.18 |
| Skewness               | 0.65  | 0.59  | 0.50  | 0.36  | 0.28  |

Volume: 08, Issue: 12 "December 2023"

#### **Source:** AISHE reports

Meghalaya experienced fluctuations in college density over the years, but the changes were not drastic. The standard deviation and standard error values indicate the dispersion and precision of the data, respectively. The relatively low values indicates that the data points are not widely spread from the mean, and the means are fairly representative. The data shows a general trend of increasing college density across states over this period (2014-19) with some states experiencing more significant changes compared to others.

In hilly regions, states often exhibit low institutional density, yet their GERs vary widely, ranging from high to low. This discrepancy may arise because higher education accessibility is not solely reliant on the physical presence of institutions but is also influenced by socioeconomic factors such as parental income and willingness to migrate. Conversely, states with high population density present a different scenario. Despite an average institutional availability per 1000 square kilometers, access may still be inadequate due to the substantial population size and potential lack of institutional capacity. For instance, in Bihar, Jharkhand, Odisha, and Rajasthan, both institutional density and GER are notably low. Access to higher education varies significantly across the states. The comparatively progressive southern states exhibit higher GERs and greater availability of educational institutions.

Significant disparities exist among states in terms of the quality of higher education institutions (HEIs), as evidenced by both NIRF rankings and the proportion of NAAC A/A+ accredited institutions within each state. Notably, approximately 60 percent of the top 200 colleges in the NIRF rankings are concentrated in just five states: Tamil Nadu, Maharashtra, Karnataka, Andhra Pradesh, and Telangana. Conversely, more populous states like Bihar, Madhya Pradesh, and Jharkhand have a limited presence of high-quality institutions. Delhi alone accounts for nearly 28 of the top 100 ranked NIRF colleges, while Tamil Nadu boasts around 34 of them. According to NAAC, less than 10 percent of colleges in Bihar and Jharkhand hold NAAC A/A+ accreditation, in contrast to states like Kerala, Punjab, and Tamil Nadu, where 51 percent, 44 percent, and 39

ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

percent of institutions respectively are accredited at this level. Consequently, there exists a substantial disparity in the quality of HEIs across the country. It appears that the market-driven expansion of higher education favors the concentration of institutions in specific regions, which contradicts the goal of ensuring equity

The mean average enrollment per college (table 7) across all states and territories fluctuates over the selected period, with a slight overall decrease from 848.37 in 2014-15 to 820.94 in 2018-19. The standard error values indicate the precision of the mean, suggesting that the calculated means are relatively accurate representations of the data. The decreasing trend in standard deviation indicates a slight reduction in the variability of average enrollments across the years.

| State/UT            | 2014-15 | 2015-16 | 2016-17 | 2017-18 | 2018-19 |
|---------------------|---------|---------|---------|---------|---------|
| Andhra Pradesh      | 516.00  | 493.54  | 469.00  | 493.00  | 524.00  |
| Arunachal Pradesh   | 1538.00 | 1355.58 | 695.00  | 810.00  | 551.00  |
| Assam               | 908.00  | 942.36  | 917.00  | 983.00  | 971.00  |
| Bihar               | 2081.00 | 2142.18 | 1801.00 | 1686.00 | 1616.00 |
| Chhattisgarh        | 511.00  | 526.53  | 531.00  | 550.00  | 565.00  |
| Goa                 | 526.00  | 560.40  | 594.00  | 640.00  | 700.00  |
| Gujarat             | 611.00  | 584.71  | 536.00  | 519.00  | 513.00  |
| Haryana             | 683.00  | 646.15  | 514.00  | 611.00  | 610.00  |
| Himachal Pradesh    | 549.00  | 519.86  | 471.00  | 553.00  | 558.00  |
| Jharkhand           | 2025.00 | 1715.69 | 1786.00 | 1786.00 | 1875.00 |
| Karnataka           | 434.00  | 437.82  | 381.00  | 416.00  | 426.00  |
| Kerala              | 517.00  | 521.41  | 510.00  | 554.00  | 568.00  |
| Madhya Pradesh      | 576.00  | 589.11  | 575.00  | 646.00  | 734.00  |
| Maharashtra         | 591.00  | 628.22  | 646.00  | 678.00  | 681.00  |
| Manipur             | 1105.00 | 1070.22 | 1002.00 | 1156.00 | 1039.00 |
| Meghalaya           | 960.00  | 1087.23 | 938.00  | 1087.00 | 1039.00 |
| Mizoram             | 669.00  | 652.90  | 658.00  | 612.00  | 603.00  |
| Nagaland            | 418.00  | 415.97  | 463.00  | 484.00  | 497.00  |
| Odisha              | 606.00  | 661.01  | 682.00  | 685.00  | 682.00  |
| Puducherry          | 566.00  | 541.66  | 549.00  | 569.00  | 600.00  |
| Punjab              | 668.00  | 632.90  | 580.00  | 576.00  | 546.00  |
| Rajasthan           | 562.00  | 550.53  | 443.00  | 526.00  | 521.00  |
| Sikkim              | 537.00  | 580.07  | 586.00  | 737.00  | 751.00  |
| Tamil Nadu          | 854.00  | 895.29  | 922.00  | 919.00  | 924.00  |
| Telangana           | 580.00  | 574.14  | 483.00  | 558.00  | 554.00  |
| Tripura             | 1134.00 | 1097.06 | 1207.00 | 1156.00 | 1153.00 |
| Uttar Pradesh       | 1011.00 | 920.50  | 776.00  | 816.00  | 743.00  |
| Uttarakhand         | 726.00  | 683.65  | 508.00  | 621.00  | 641.00  |
| West Bengal         | 1455.00 | 1427.31 | 1323.00 | 1170.00 | 1170.00 |
| Andaman and Nicobar | 818.00  | 887.86  | 904.00  | 928.00  | 914.00  |

#### Table 7: Average Enrolment per college (Age Group 18-23 years)

www.ijsser.org

Copyright © IJSSER 2023, All rights reserved

Page 3994

ISSN: 2455-8834

| Islands                |         |         |         |         |         |
|------------------------|---------|---------|---------|---------|---------|
| Chandigarh             | 1741.00 | 1870.56 | 1964.00 | 2052.00 | 2034.00 |
| Dadra and Nagar Haveli | 662.00  | 747.43  | 668.00  | 690.00  | 729.00  |
| Daman and Diu          | 366.00  | 382.13  | 382.00  | 336.00  | 340.00  |
| Delhi                  | 1506.00 | 1526.80 | 1501.00 | 1531.00 | 1562.00 |
| Jammu and Kashmir      | 683.00  | 644.06  | 646.00  | 720.00  | 799.00  |
| Mean                   | 848.37  | 843.22  | 788.89  | 824.40  | 820.94  |
| Standard Deviation     | 455.04  | 439.38  | 420.72  | 407.12  | 404.77  |
| CV (%)                 | 53.64   | 52.11   | 53.33   | 49.38   | 49.31   |
| Skewness               | 1.48    | 1.49    | 1.59    | 1.57    | 1.66    |

Volume: 08, Issue: 12 "December 2023"

**Source:** AISHE reports

Andhra Pradesh, Arunachal Pradesh, and Assam states show fluctuations in average enrollment over the years, with some experiencing significant changes. Arunachal Pradesh, for instance, saw a substantial decrease from 1538 in 2014-15 to 551 in 2018-19 (table 7). Bihar, Jharkhand, and West Bengal states have relatively high average enrollments per college throughout the period, although there are fluctuations. Chhattisgarh, Goa, and Gujarat: These states show relatively stable average enrollments per college over the years. Haryana, Himachal Pradesh, Karnataka, Kerala, and Madhya Pradesh states exhibit fluctuations, with some showing decreases in average enrollment over the years

The data suggests that while there are variations in average enrollment per college across different states and territories, the distributions tend to be positively skewed, with a few colleges having significantly higher enrollments compared to others. States with higher average enrollments per college may need to focus on infrastructure and resources to accommodate a larger student population effectively. Similar disparities are evident concerning the number of enrollments per college. The average enrollment in colleges varies significantly, ranging from as low as 426 in Karnataka to 2034 in Chandigarh. States like Karnataka, Andhra Pradesh, Kerala, and Telangana, which contribute a larger percentage of total colleges in India, exhibit lower enrollment numbers per institute, with figures falling below 600, significantly lower than the national average of 698 per college.

As per the AISHE Report 2018-19, albeit student enrollment in higher education institutions rose from 32.3 million in 2013-14 to 36.6 million in 2017-18, there has been a decrease in the total number of teachers from 1367535 to 1284755 over the same period. In 2018-19, the pupil-teacher ratio in higher education was 26 which means that for every 26 students, there was one teacher available. Bihar and Jharkhand exhibited the highest ratios of teachers to students, while Karnataka, Andhra Pradesh, Kerala, and Lakshadweep had lower ratios. Comparatively, smaller states and Union Territories such as Tripura, Jammu and Kashmir, and Dadra and Nagar Haveli

ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

had favorable pupil-teacher ratios when juxtaposed with larger states like West Bengal and Rajasthan. The faculty shortage adversely impacts the quality of education and research.





A high pupil-teacher ratio puts the strain on teachers as they are tasked with instructing numerous students, resulting in insufficient time allocated to each student and teachers finds themselves unable to engage in research pursuits. It has been observed that the shortage of faculty is being addressed by relying heavily on ad hoc or part-time faculty. Nevertheless, institutions with a substantial reliance on ad hoc or part-time faculty tend to exhibit poor performance in terms of teaching quality.

In RUSA aims to address the problem of vacant teaching position and attempt to ensure that faculty positions in institutions reach a minimum of 85% of the sanctioned faculty strength. States are obligated to fill all vacant sanctioned posts and can access funds under RUSA to create additional positions. The objective is to achieve a pupil-teacher ratio of 20:1, thereby fostering quality education and research.

While some regions have made significant strides in expanding access and improving quality, others continue to grapple with issues such as inadequate infrastructure, faculty shortages, and administrative bottlenecks. The proactive measures are required to address regional disparities in higher education access and infrastructure. This may involve targeted investment in underserved areas, incentivizing institutions to establish campuses in remote regions, and promoting distance

ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

education and online learning modalities. Building robust transportation and communication networks can also facilitate mobility and connectivity for students from remote areas.

RUSA Scheme a key intervention by the Government of India, addresses these challenges. Envisioned as a comprehensive reform initiative, RUSA aims to enhance access, equity, and quality in higher education through a range of strategies, including infrastructure development, faculty improvement, academic reforms, and governance enhancements. By providing financial assistance to states and union territories RUSA seeks to catalyze institutional reforms and promote innovation in higher education delivery.

| State/UT                  | 2014-15 | 2015-16 | 2016-17 | 2017-18 | 2018-19 |
|---------------------------|---------|---------|---------|---------|---------|
| Andhra Pradesh            | 17      | 16      | 18      | 19      | 18      |
| Arunachal Pradesh         | 49      | 43      | 41      | 43      | 31      |
| Assam                     | 25      | 25      | 30      | 34      | 31      |
| Bihar                     | 50      | 54      | 70      | 67      | 61      |
| Chhattisgarh              | 24      | 23      | 27      | 29      | 28      |
| Goa                       | 17      | 18      | 18      | 17      | 16      |
| Gujarat                   | 28      | 27      | 28      | 27      | 26      |
| Haryana                   | 18      | 18      | 26      | 29      | 26      |
| Himachal Pradesh          | 21      | 22      | 27      | 27      | 27      |
| Jharkhand                 | 58      | 52      | 61      | 59      | 60      |
| Karnataka                 | 14      | 14      | 15      | 16      | 15      |
| Kerala                    | 17      | 16      | 19      | 20      | 18      |
| Madhya Pradesh            | 24      | 24      | 28      | 35      | 33      |
| Maharashtra               | 23      | 24      | 27      | 27      | 27      |
| Manipur                   | 21      | 21      | 23      | 31      | 22      |
| Meghalaya                 | 20      | 24      | 27      | 30      | 26      |
| Mizoram                   | 18      | 19      | 19      | 17      | 18      |
| Nagaland                  | 19      | 17      | 19      | 19      | 19      |
| Odisha                    | 20      | 21      | 26      | 28      | 27      |
| Puducherry                | 10      | 10      | 12      | 13      | 13      |
| Punjab                    | 17      | 16      | 18      | 21      | 18      |
| Rajasthan                 | 23      | 26      | 27      | 32      | 29      |
| Sikkim                    | 17      | 21      | 22      | 20      | 27      |
| Tamil Nadu                | 16      | 15      | 18      | 18      | 17      |
| Telangana                 | 16      | 16      | 17      | 19      | 18      |
| Tripura                   | 31      | 30      | 35      | 37      | 33      |
| Uttar Pradesh             | 39      | 34      | 42      | 60      | 46      |
| Uttarakhand               | 23      | 22      | 26      | 28      | 27      |
| West Bengal               | 38      | 36      | 42      | 37      | 35      |
| Andaman & Nicobar Islands | 30      | 34      | 32      | 29      | 25      |
| Chandigarh                | 29      | 31      | 31      | 31      | 28      |

#### Table 8: Pupil Teacher Ratio (PTR)

www.ijsser.org

Copyright © IJSSER 2023, All rights reserved

#### ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

| Dadra and Nagar Haveli | 25    | 27    | 29    | 28    | 29    |
|------------------------|-------|-------|-------|-------|-------|
| Daman and Diu          | 16    | 16    | 16    | 14    | 14    |
| Delhi                  | 49    | 51    | 57    | 61    | 52    |
| Jammu and Kashmir      | 32    | 31    | 38    | 37    | 35    |
| All-India              | 23    | 23    | 26    | 29    | 26    |
| Mean                   | 25.47 | 25.47 | 28.81 | 30.22 | 27.81 |
| Standard Deviation     | 11.34 | 10.79 | 12.90 | 13.46 | 11.57 |
| CV (%)                 | 44.52 | 42.36 | 44.78 | 44.54 | 41.60 |
| Skewness               | 1.41  | 1.30  | 1.60  | 1.32  | 1.46  |

Source: AISHE reports



### Fig. 5 Pupil Teacher Ratio (PTR)

www.ijsser.org Copyright © IJSSER 2023, All rights reserved

ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

| Method                        | Value    |                | Prob.              |  |  |  |  |  |
|-------------------------------|----------|----------------|--------------------|--|--|--|--|--|
| ANOVA F -test                 | 3.568966 |                | 0.077543           |  |  |  |  |  |
| WELCH F-test                  | 0.134254 |                | 0.086126           |  |  |  |  |  |
| Analysis of Variances         |          |                |                    |  |  |  |  |  |
| Source of Variation           | df       | Sum of Squares | Mean Squares       |  |  |  |  |  |
| Between                       | 3        | 1705426        | 568475.5           |  |  |  |  |  |
| Within                        | 16       | 3181.827       | 198.8642           |  |  |  |  |  |
| Total                         | 19       |                |                    |  |  |  |  |  |
| Category Statistics           |          |                |                    |  |  |  |  |  |
| Variable                      | Mean     | Std. Dev.      | Std. Error of Mean |  |  |  |  |  |
| Average Enrolment per college | 700.4855 | 38.07565       | 12.5581            |  |  |  |  |  |
| Gross Enrolment Ratio         | 25.2155  | 0.851537       | 0.380819           |  |  |  |  |  |
| College Density               | 27.73058 | 0.435185       | 0.194621           |  |  |  |  |  |
| Pupil Teacher Ratio (PTR)     | 25.4000  | 2.509980       | 1.122497           |  |  |  |  |  |

### **Table: 9 Test for Equality of Means**

The table 9 presents the results of a test for equality of means, including ANOVA and Welch's Ftests and category statistics for various variables. The analysis of variances provides insights into the sources of variation in the data, distinguishing between variability within and between groups. The ANOVA F-test assesses whether there are significant differences in means across groups. In this case, the F-value is 3.568966, indicating that there is some evidence to suggest that the means of at least one variable differ significantly across groups. However, the corresponding probability value (Prob.) of 0.077543 is greater than the conventional significance level (e.g., 0.05), suggesting that the result is not statistically significant at typical levels of significance. Welch's F-test, which is another approach to comparing means across groups, also yields a non-significant result, with an F-value of 0.134254 and a probability value (Prob.) of 0.086126.

#### Conclusion

Accessibility to higher education is a fundamental pillar for promoting the societal progress, economic development, and individual empowerment. In the Indian context, where education has always been revered as a tool for social mobility and change, the initiatives like the RUSA Scheme is playing a pivotal role in enhancing access to higher education in the country. By prioritizing the establishment of new universities, upgrading existing colleges, and providing infrastructural support, it has contributed significantly to expanding educational opportunities

ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

across the country. Furthermore, its emphasis on improving faculty recruitment, implementing student feedback mechanisms, and promoting quality teaching has further bolstered access to education. Despite challenges such as varying access across states and socio-economic barriers, RUSA has laid a strong foundation for promoting inclusivity and equity in the higher education system.

The socioeconomic disparities, regional imbalances, and systemic barriers as major obstacles to equitable access to higher education in India. These barriers disproportionately affect marginalized communities, including women, rural populations, and economically disadvantaged groups, thereby perpetuating inequality and hindering inclusive development. The effectiveness of RUSA implementation often depends on factors such as state capacity, political commitment, and stakeholder engagement. There is a need for a holistic approach to enhancing accessibility to higher education, beyond the purview of RUSA alone. Addressing structural inequalities requires concerted efforts across multiple fronts, including primary and secondary education, social welfare policies, and affirmative action measures. Initiatives aimed at bridging the rural-urban divide, promoting gender equality, and empowering marginalized communities are essential for creating a more inclusive higher education landscape. There is a need for greater coordination and collaboration among central and state agencies to ensure the effective implementation of RUSA and other related initiatives. This includes streamlining funding mechanisms, enhancing monitoring and evaluation frameworks, and fostering knowledge-sharing platforms for best practices dissemination. In addition to this the efforts to improve the quality of higher education must go hand in hand with measures to enhance access and equity. This entails investing in faculty development programs, promoting research and innovation, and leveraging technology for pedagogical innovation and outreach. Additionally, there is a need to strengthen support systems for students from marginalized backgrounds, including scholarships, mentorship programs, and counseling services.

To conclude, the accessibility to higher education is not merely a matter of individual opportunity but a collective imperative for building a more equitable and prosperous society. The RUSA Scheme is a crucial step for achieving this vision by expanding access, enhancing quality, and promoting inclusivity in higher education across India. However, realizing the full potential of RUSA requires sustained commitment, strategic investments, and concerted action by all stakeholders. By prioritizing equity, excellence, and empowerment, India can unlock the transformative power of higher education to drive inclusive growth and development for generations to come.

Acknowledgement: This paper is based on the study conducted under the Rashtriya Uchchatar Shiksha Abhiyan (RUSA)Research Project, RUSA Scheme, Ministry of Education, Govt. of India.

ISSN: 2455-8834

Volume: 08, Issue: 12 "December 2023"

#### References

- 1. Gupta, S., & Patel, K. (2019). Assessing the Impact of RashtriyaUchchatar Shiksha Abhiyan (RUSA) on Accessibility to Higher Education in Indian States. *Indian Journal of Education*, *45*(2), 176-192.
- 2. Kumar, A., & Sharma, N. (2017). Challenges and Opportunities in Implementing RashtriyaUchchatar Shiksha Abhiyan (RUSA) for Enhancing Accessibility to Higher Education in India. *International Journal of Educational Development*, 55, 78-91.
- 3. Mehta, S. (2005). Measurement and Analysis of student's engagement in university classes. Higher Education Research and Development. Vol 24 Issue 1. Retrieved and downloaded from https://complit.washington.edu on 19/05/2019.
- 4. Sharma, A., & Singh, R. (2020). Enhancing Accessibility to Higher Education: A Study of RashtriyaUchchatar Shiksha Abhiyan (RUSA) Scheme in India. *Journal of Higher Education Policy and Management*, *39*(4), 432-449.
- 5. Singh, V., & Gupta, R. (2016). Evaluating the Effectiveness of RashtriyaUchchatar Shiksha Abhiyan (RUSA) in Improving Accessibility to Higher Education: A Case Study of Selected States. *Journal of Educational Research and Innovation*, *3*(*1*), 45-62.
- 6. Tiwari, P., & Mishra, S. (2018). Accessibility to Higher Education in India: A Review of RashtriyaUchchatar Shiksha Abhiyan (RUSA) Scheme. *Journal of Educational Planning and Administration*, *32*(*3*), 279-295.
- Varghese, N.V & Michaela, M (2014).Governance reforms in higher education: A study of institutional autonomy in Asian countries. Retrieved and downloaded from http://www.unesco.orgon 27/7/2016.